CS15-319 / 15-619
Cloud Computing

Recitation 12
November 12th and Nov 15th, 2013
Announcements

• Encounter a general bug:
 – Post on Piazza
• Encounter a grading bug:
 – Post Privately on Piazza
• Don’t ask if my answer is correct
• Don’t post code on Piazza
• Search before posting
• Post feedback on OLI
Piazza Questions

• STDOUT, STDERR redirection
 – ./run.sh 1> result.out 2> error.out

• Round Trip Time (RTT)
 – Time between generating a request and receiving a response

• Timeout to HBase cluster
 – Security group
 – Time out between master node and slave nodes
 • Common under a heavy load

• DynamoDB throughput exceeded
 – Warning: should be normal
 – It might lead to earlier termination for YCSB (still investigating)
DynamoDB vs. HBase

• Data Model
 – Key-value vs. Column oriented Key-value

• Proprietary vs. Open source

• Cost
 – DynamoDB: Provisioned Throughput Capacity
 – HBase: Instance + EMR

• Limitations:
 – DynamoDB:
 • Item size: 64 KB
 • Query result: 1 MB
Project 3, Module 5 Reflections

• When to use DynamoDB:
 – Required throughput is determined
 • e.g. steady arrival rate
 – Easier to implement and scale
 – Enough budget
 • Charged by provisioned throughput capacity

• When to use HBase:
 – Low cost
 – Less constrains (Item size, query result)
 – Open source, more configurable
Module to Read

• UNIT 5: Distributed Programming and Analytics Engines for the Cloud
 – Module 16: Introduction to Distributed Programming for the Cloud
 – Module 17: Distributed Analytics Engines for the Cloud: MapReduce
 – Module 18: Distributed Analytics Engines for the Cloud: Pregel
 – Module 19: Distributed Analytics Engines for the Cloud: GraphLab
MapReduce

• The idea of MapReduce

Please tell me how many times does the word “Apple” appear in these books?
MapReduce

• The idea of MapReduce

How many times does the word “Apple” appear in these books?

I heard 6 “Apple”s!
The idea of MapReduce

How Do I know Who is the “Apple” Man?

You Don’t!
The idea of MapReduce

Map Phase

Reducer

Magic Box (Shuffle, sort, merge)

Reduce Phase
MapReduce

- The idea of MapReduce

Map Phase:

- Orange, 1
- Blueberry, 1
- Blueberry, 1
- Apple, 1

Reduce Phase:

Black Box (Shuffle, sort, merge):

- Apple, 1
- Apple, 1
- Apple, 1
- Orange, 1
- Orange, 1
- Blueberry, 1

Jar instead of streaming
MapReduce

• Mapper
 – Input: lines in files in our project
 – Output: **key-value pairs**
 • **Keys** are used in Shuffling and Merge to find the Reducer that handles the intermediate output for that specific key. (in our example, Apple, Orange and Blueberry are keys)
 • **Values** are messages sent from mapper to reducer (in our case it is always 1)
 • Mappers’ output is intermediate because reducers will receive the key-value pairs and take them as input.
MapReduce

• Reducer
 – Input: **key-value pairs**
 – Output: the final result we need
 • Depends on what we want, our code should process the value in the key-value pairs that we got accordingly (in the word count example, we just add up all the values).
Project 4 Module 1

• Write a MapReduce program that will build an inverted index of documents
• EMR Java (instead of streaming)
Recommendations

• Make sure to test for correctness with small datasets first
• EMR will charge you one hour of usage for instances even though your EMR job failed to start
Upcoming Deadlines

• Project 4:

 Project 4
 MapReduce
 Hadoop MapReduce
 Checkpoint
 Available Now
 Due 11/17/13 11:59 PM

• Unit 5:

 UNIT 5: Distributed Programming and Analytics Engines for the Cloud
 Module 16: Introduction to Distributed Programming for the Cloud
 Module 17: Distributed Analytics Engines for the Cloud: MapReduce
Demo Outline

• Code for MapReduce example
• Use EMR with customized jar