CS15-319 / 15-619
Cloud Computing

Recitation 8
October 15th and 18th, 2013
Announcements

• Encounter a general bug:
 – Post on Piazza
• Encounter a grading bug:
 – Post Privately on Piazza
• Don’t ask if my answer is correct
• Don’t post code on Piazza
• Search before posting
• Post feedback on OLI
Project 3, Module 1 Reflections

• Common questions about this module:
 – Why Query 6 and Query 7 got worse performance after indexing
 – SELECT COUNT(*) FROM songs WHERE duration > (SELECT AVG(duration) FROM songs) ;
 – SELECT COUNT(*) FROM songs WHERE duration <= (SELECT AVG(duration) FROM songs) ;
Common questions about this module:

- Why Query 6 and Query 7 got worse performance after indexing

 - `CREATE INDEX idx_duration ON songs duration, artist_id(255));`

 - The index is sorted by the concatenation of duration and artist_id

- Binary search can be used for searching
- `Average()` will not benefit from binary search
- `Count(*)` also seems to have some negative effects
Project 3, Module 1 Reflections

• Common questions about this module:
 – Why did Query 6 and Query 7 get worse performance after indexing
 • Indexes and real raw data are not residing together
 – For an average: 2 disk reads happen, 1 for index, 1 for real data, which is slow.
 • Different databases have different implementations
Unit 3 Quiz

- Average: 78%
Module to Read

- UNIT 4: Cloud Storage
 - Module 12: Cloud Storage
 - Module 13: Case Studies: Distributed File Systems
 - Module 14: Case Studies: NoSQL Databases
 - Module 15: Case Studies: Cloud Object Storage
 - Quiz 4: Cloud Storage
Project 3

• Files vs. Databases
 – File vs. Database

• Vertical Scaling in Databases
 – Vertical Scaling

• Horizontal Scaling in Databases
 – Horizontal Scaling

• Working with NoSQL: DynamoDB / Hbase
 – Amazon DynamoDB
 – DynamoDB vs. HBase
Project 3 Module 2 - Vertical Scaling

• Explore the database performance by tweaking 2 parameters
 – Instance Type
 • m1.large
 • m1.xlarge
 – Storage Type
 • RAM Disk
 • Ephemeral Disks
 • Amazon EBS
Different Types of Storage

- **Remote copy**
- **Synchronous Copy**

Storage Subsystems:
- **Elastic Block Store (EBS)**
- **External Storage**

Availability Levels:
- **Availability Zone**
- **Region**

Resources:
- **CPU**
- **Mem**
- **HDD**
- **RAM Disk**
- **Ephemeral Disk**

Disaster Recovery
Different Types of Storage

• **Memory - RAM Disk**
 – Inside the server
 – Usually from several Gigabytes to several hundreds of Gigabytes

• **Internal HDD (Hard Disk Drive)**
 – Inside the server
 – Sometimes employs RAID (Why?)
 – Usually from 100s Gigabytes to several Terabytes
Different Types of Storage

• **External Storage Subsystems**
 – Outside of the server
 – Connected by cables via switches, routers, directors (Ethernet, Fiber...)
 – Provide extra functionalities (Copy services, concurrent volume accesses, grouping, caching...)
 – Shared by multiple servers
 – Almost always employs RAID
 – Capacity range from dozens of TB to 100s of TB
Different Types of Storage

- External Storage Subsystems

IBM 2424-951 DS8800 182TB RAW 129TB useable w/RAID 5 SYSTEM STORAGE
On eBay: US $899,995.00

EMC SYMTRIX VMAX 40K
Project 3 Module 2 – Vertical Scaling

Explore the database performance by manipulating 2 parameters:

- Local Access VS. Remote Access
- m1.large VS. m1.xlarge
- RAM Disk / ephemeral disk / ephemeral disk with RAID0 / EBS
- EBS optimized VS. no EBS optimized
Upcoming Deadlines

• Project 3:

<table>
<thead>
<tr>
<th>Project 3</th>
<th>Vertical Scaling in Databases</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vertical Scaling</td>
<td>Checkpoint</td>
</tr>
</tbody>
</table>

• Unit 4:

<table>
<thead>
<tr>
<th>UNIT 4: Cloud Storage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module 12: Cloud Storage</td>
</tr>
<tr>
<td>Module 13: Case Studies: Distributed File Systems</td>
</tr>
</tbody>
</table>
Demo Outline

• Provisioning with spot instances
• Running sysbench
 – RAM disk
 – Ephemeral disk