Introduction to Cloud Computing

Qloud Demonstration

15-319, spring 2010 3rd Lecture, Jan 19th

Suhail Rehman

Time to check out the Qloud!

- Enough Talk!
- Time for some Action!
- Finally you can have your own Cloud (Virtual Machines)!
- Get your own Cloud from Qloud!

Time to check out the Qloud!

- Enough Talk!
- Time for some Action!
- Finally you can have your own Cloud (Virtual Machines)!
- Get your own Cloud from Qloud!

User's Qloud Perspective

Important Qloud servers and interfaces

- Hadoop Server
 - hadoop.qatar.cmu.edu
 - User workspace (Hadoop/Eclipse)
 - AFS access and login
- Cloud Gateway Server
 - cloud-01-14.qatar.cmu.edu
 - Gives you access the virtualized resources of the cloud
 - Will be a SOCKS proxy for all your Cloud and Hadoop tasks
- Qloud Web Interface
 - http://10.160.0.100:9080/cloud/
 - Easy web interface to request your Cloud
 - Once provisioned, you can checkout the vital stats of your cloud

Steps to get your own Cloud

- Set the Cloud Gateway Server as the SOCKS proxy in your Browser
- Log on to the Qloud Web Interface and request your Cloud
- Wait for our uber-geek (aka Brian) to approve
- Once Brian approves it, you'll have your cloud in 2 hours
- The entire process should take less than 24 hours ☺
 - You cannot request a cloud at 2am and expect it to be ready at 4am

Qloud Web Interface

It is time for Hadoop ©

- The Hadoop infrastructure allows you to run map-reduce jobs distributed over your virtual machines
- In Hadoop MapReduce, one node is designated as the *Master Node*, and the rest are slaves.
- HDFS requires one Namenode and several Datanodes.
- In our setup, the Master Node and Namenode are the same machine.

Namenode

Hadoop on Your Cloud

جامعة كارنيجي ميلون في قطر Carnegie Mellon Qatar

Where to go from here?

- Logon to your Master Node
 - ssh to <u>cloud-01-14.qatar.cmu.edu</u> and then ssh to your <u>master node</u>
- Setup Hadoop
 - Fortunately, your VM's automatically have the correct configuration files for Hadoop the moment they are provisioned (Thanks to Brian!)
 - All you need to do is format HDFS and start the Hadoop services.
- Lets try running some sample code on Hadoop

Sample MapReduce Code- Estimate π

- **E**stimating π by random sampling
- Imagine you have a dart board like so:

lacksquare π is simply the (ratio of darts that land inside the circle to the total number of darts thrown) times 4

Writing this as a Serial Program

■ Throw N darts on the board. Each dart lands at a random position (x,y) on the board.

- Note if each dart landed inside the circle or not
 - Check if $x^2+y^2 < r$
- Take the total number of darts that landed in the circle as *S*

$$4\left(\frac{s}{N}\right) = \pi$$

But I have Millions of Darts!

- If you want to get an accurate estimate of Pi, you need a large number of random samples.
- Notice that each dart can be thrown at any time and it's position can be evaluated independently
- With one person throwing all the darts, it will take a long time to finish
- If we had N people throwing a dart each, this would be much faster!

But I have Millions of Darts!

How do you do this in Parallel?

- Let (x,y) be a random position of the dart inside the square.
- **Each** (x,y) pair can be evaluated independently.
- Let us "map" each (x,y) pair to a result the result being whether it is inside the circle (1) or not (0).

Input	Result
(x1,y1)	→ 1
(x2,y2)	0
(x3,y3)—	→ 1
(x4,y4)	→ 0
(x5,y5)	→ 1

The Map function

A Map function takes input values and produces an output for each input value in parallel.

.....and then?

- So we have results of each (x,y) pair lots of them
- We need to find the number of points inside the circle.
 We need to sum up the values

The Reduce Function

A Reduce function takes input values from the Map functions and produces output using a user defined operation.

In this case, addition is the reduce operation.

What about Pi?

Now that we have the total number of points inside the circle, S and the total number of points N we've sampled...

$$4\left(\frac{s}{N}\right) = \pi^*$$

- 1. N should be large
- 2. Points should be chosen uniformly at random

^{*}Subject to Terms and Conditions

Running PI MapReduce Code

- The MapReduce code creates random (x,y) pair values
- It gives each node a number of (x,y) pairs and evaluates if it's in the circle or not (MAP)
- Then some nodes will collect the results of these samples, evaluate the percentage and calculate π (REDUCE)
- Running the hadoop example:

Working with Files in Hadoop

- Notice that the Pi example randomly generates input, it does not require any user files.
- Hadoop is mainly used to work with large data, and large data is always in a file.
- HDFS to the rescue!

HDFS Basics

- HDFS is the Hadoop Distributed File System.
- Files are distributed over all four nodes and are triplereplicated, by default, to tolerate failure.

HDFS Commands

All commands begin with hadoop dfs

UNIX command	Hadoop HDFS Command
ls /	hadoop dfs -ls /
cat /dir/filename	hadoop dfs -cat /dir/filename
mkdir dir1	hadoop dfs -mkdir /dir1
rm /dir/filename	hadoop dfs -rm /dir/filename
rm -r /dir	hadoop dfs -rmr /dir

Handling Files in HDFS

- To add files to HDFS:
 - hadoop dfs –put localfilename /hdfs_dir/remotefilename
- To copy files from HDFS to local filesystem
 - hadoop dfs –get /hdfs_dir/remotefilename localfilename
- To copy files inside HDFS filesystem
 - hadoop dfs -cp /hdfs_dir/file1 /hdfs_dir/file2

Keeping track of your Hadoop & HDFS

- Hadoop MapReduce has a JobTracker web interface
 - Keeps Track of the submitted jobs, time taken, errors, logs etc.
 - http://MASTER_NODE_IP:50030
- The HDFS Namenode also maintains a web interface
 - Browse your HDFS files
 - See how much disk space you have remaining in your HDFS.
 - http://NAME_NODE_IP:50070

Setting up Eclipse

- Might be easier to work with an IDE when developing large applications in Hadoop.
- Eclipse is available on hadoop.qatar.cmu.edu with the MapReduce plugin
- Setup and Run eclipse @ <u>hadoop.qatar.cmu.edu</u>
 - Use xwin32 on windows machines to run eclipse remotely
 - Configure Eclipse to use your cloud
 - Start developing MapReduce applications