Introduction to Cloud Computing

Overview and Introduction

15-319, spring 2010 1st Lecture, Jan 12th

Majd F. Sakr

Why take 15-319?

- Because you're cool!
- Because we're cool!
- Gain real world experience and learn new tools
 - Emerging technology
 - New programming model
 - Could be the future of computing?
 - Running application on very large data-sets

Syllabus: Course Purpose

- Introduce you to the basics of the emerging cloud computing paradigm
 - learn how this paradigm came about
 - understand its enabling technologies
 - understand the computer systems constraints, tradeoffs and techniques in setting up and using the cloud
- Teach you how to implement algorithms in the cloud
 - gain competence in Hadoop/MapReduce as a programming model for distributed processing of large datasets.
 - understand how different algorithms can be implemented and executed in the Hadoop framework.
 - gain competence in evaluating the performance and identifying bottlenecks when mapping applications to the cloud.

Syllabus: Target Audience

- Juniors & Seniors
- Pre-requisites:
 - **15-213**
 - **15-251**
 - **15-212**
 - Other equivalent courses

Syllabus: Instructor

- Majd F. Sakr
- Office Hours:
 - Tuesday 3-5pm
 - Welcome when my office door is open
 - By appointment
- TA: Suhail Rehman
- Office Hours:
 - To be decided NOW
 - By appointment

What are we trying to answer?

What is Cloud Computing?

What are its challenges and opportunities?

Why Cloud Computing?

How does
Cloud
Computing
work?

End of week two

Cloud Computing

Syllabus: Text Books

Primary Book:

Tom White, Hadoop: The Definitive Guide, O'Reilly Media, 2009.

Reference Books

- Tanenbaum and van Steen, Distributed Systems: Principles and Paradigms, Pearson, 2007.
- Jean Dollimore, Tim Kindberg, George Coulouris, Distributed Systems: Concepts and Design, Fourth Edition, Addison Wesley, 2005.
- Randal E. Bryant and David R. O'Hallaron,
 Computer Systems: A Programmer's Perspective, Prentice Hall, 2003.
- Patterson and Hennessy, Computer Organization and Design: The Hardware/Software Interface, Fourth Edition, Morgan Kaufmann/Elsvier.
- Jason Venner, Pro Hadoop, Apress, 2009.

Syllabus: Projects

Five assignments

- 2 weeks per assignment
- Technical papers and case studies
- Short write-up
- In-class presentations and discussions

Four Projects:

- 4-5 weeks per project
- Final project includes a paper and presentation

Syllabus: Exam

Syllabus: Grading

- Attendance/Participation 10%
- Assignments 15%
- Projects 60%
 - Project 1: 10%
 - Project 2: 10%
 - Project 3: 15%
 - Project 4: 25%
- **Exam 15%**

Final Thoughts

What Computing Paradigms Are There?

Computing Computing

Reconfigurable Parallel

Computing Computing

Computing Computing

Computing Grid Computing C_{/Uster} Computing Utility Computing C/OUd Computing Pervasive Computing Mobile Computing

جامعة کارنیجی میلود فی قطر

Carnegie Mellon Qatar

Personal Computing

Reconfigurable Computing

Parallel Computing

Distributed Computing Ubiquitous Computing

> Autonomic Combriting

Super Computing Grid Computing

> C_{/Uster} Computing

Pervasive Computing

Utility

C/OUd Computing

Mobile Computing

جامعة کارنیجی میلود فی قطر Carnegie Mellon Qatar

Personal Computing

- Personal computing system
- Local software installation, maintenance
- **■** Local system maintenance
- Customizable to user needs
- Very low utilization
- High up-front cost

Personal Computing

Reconfigurable

Cowbriting barallel

Computing Computing Computing

Autonomic Computing

Computing

Computing

Computing

Computing

Computing

Computing

Computing

Reconfigurable Computing

- **Field Programmable Gate Arrays (FPGAs)**
 - Reprogrammable Hardware
 - Can exploit embarrassingly parallel code
 - Slow programming time (ms)
 - Power hungry

Personal Computing

Reconfigurable Consputing

Cowbriting barallel

Computing Computing Computing

Autonomic Computing

Super Computing Grid Computing C_{/Uster} Computing Utility Computing C/OUd Computing Pervasive Computing Mobile Computing

جامعة کارنیجی میلود فی قطر

Carnegie Mellon Qatar

Autonomic Computing

 Motivation: rapidly growing complexity of integrating, managing and operating computer systems

introduced by IBM in 2001

Inspired by Human ANS

Self-management includes: self-

Computing Computing

Reconfigurable

Consputing

Darallel

Cowbriting barane,

Combating Combating Combating

Autonomic Autonomic

Super Computing Grid Computing C_{/Uster} Computing Utility Computing C/OUd Computing Pervasive Computing Mobile Computing

Mobile Computing

- You can use computing technology on the move
- Since 1990s
- Intermittent connectivity
- Limited Bandwidth
- Mobile device maturity

Computing Computing

Reconfigurable

Consputing

Darallel

Cowbriting baraller

Combating Combating Combating

Autonomic Autonomic

Super Computing Grid Computing C_{/Uster} Computing Utility Computing C/OUd

Pervasive Computing

Computing Mobile

جامعة دارنيجي ميلود في قطر Carnegie Mellon Qatar

Utility Computing

- Water, gas, and electricity are provided to every home and business as commodity services
 - You get connected to the utility companies' "public" infrastructure
 - You get these utility services on-demand
 - And you pay-as-you use
- Utility Computing is doing same for computing resources (processing power, bandwidth, data storage, and enterprise software services)
- Thought of by 1960s but re-surfaced late 90s
 - "If computers of the kind I have advocated become the computers of the future, then computing may someday be organized as a public utility just as the telephone system is a public utility... The computer utility could become the basis of a new and important industry."
 - —John McCarthy, MIT Centennial in 1961

Computing Computing

Reconfigurable

Reconfigurable

Parallel

Parallel

Anuting

Combating Combating Combating

Autonomic Autonomic

Super Computing Grid Computing C_{/Uster} Computing Computing Computing Pervasive Computing Mobile Computing

Existing Computing Paradigms - Blue Group

Combring barallel

Distributed

Computing

Computing

Computing

Blue Group

- Distributed Computing
 - Using distributed systems to solve large problems.
 - Distributed System: multiple autonomous computers connected through a communication network
 - The system has a distributed memory where each processor has its private memory.
 - Information exchanged using communication models, ex: MPI

Blue Group

Distributed Computing

Cluster Computing:

- Characteristics:
 - tightly coupled computers
 - single system image
 - Centralized Job management & scheduling system
- Better performance and availability and more costeffectiveness over single computer with same capabilities
- Since 1987

Grid Computing:

- According to Gartner, "a grid is a collection of resources owned by multiple organizations that is coordinated to allow them to solve a common problem."
- Characteristics:
 - loosely coupled
 - no Single System Image
 - distributed Job Management & scheduling
- Originated early 1990s

What is Parallel Computing

 Calculations of large problems are divided into smaller parts and carried out simultaneously/concurrently on different processors.

Parallel Computing

 All have access to a shared memory that is used to exchange information between processors

Blue Group

- Super Computing
 - Thousands of processors
 - Used for compute-intensive problems
 - Days instead of Years!!!
 - introduced in the 1960s

Blue Group

Computing Computing

Reconfigurable Consputing

Gouston ting

Computing Opiquitous

Autonomic Autonomic

Computing Computing Pervasive

Computing Mobile

Existing Computing Paradigms - Green Group

CombatingThiquitous

Pervasive Computing

Green Group

- Ubiquitous= "seeming to be in all places"
- Pervasive= "present or noticeable in every part of a thing or place"
- Information processing engaged in everyday's activities and objects.
- Term used since 1980s
- Different models but same vision:
 - Small, inexpensive, robust devices distributed throughout everyday's life

Computing Personal

Reconfigurable Considurations

pistributed a computing

Couldnifue

Autonomic Autonomic Computing

Computing Computing Pervasive Computing

Computing Mobile

Computing

Personal Computing Reconfigurable Computing Parallel Computing) Distributed Combring Ubiquitous Computing Autonomic

Think of it this way ...

Banking

Think of it this way ...

Power/ heat/electricity/water supply to your home

Before

Now

Think of it this way ...

Transportation

- Which one should you pick?
- Should you buy/rent?

Spring 2010 ©

تا محة کارنیجی میلون فی قطر Carnegie Mellon Qata

Cloud Computing

Think of it as Internet Computing

Computation done over the internet

Enabled through:

- High Bandwidth and High Speed Internet
- Utility Computing
- Virtualization
- ...

Cloud Computing Services

Three basic services:

- Software as a Service (SAAS) model
 - Apps through browser
- Platform as a Service (PAAS) model
 - Delivery of a computing platform for custom software development as a service
- Infrastructure as a Service (IAAS) model
 - Deliver of computer infrastructure as a service
- XAAS, the list continues to grow...

Interesting Videos

SaaS:

http://www.youtube.com/watch?v=kGUPSvswmY0&feat ure=related

Virtualization:

http://www.youtube.com/watch?v=p11lJOnALS4&featur
e=related

Cloud Computing:

http://www.youtube.com/watch?v=XdBd14rjcs0&NR=1