Introduction to Cloud Computing

Systems II

15-319, spring 2010 6th Lecture, Jan 28th

Majd F. Sakr

Lecture Motivation

- System Impact on Performance
- System Considerations
- Performance Evaluation

Performance Bottlenecks

Consider bandwidth and latency between these layers

Performance Bottlenecks

Consider bandwidth and latency of all layers

Performance Bottlenecks

Consider bandwidth and latency of all of these pipes

How about a network between different blade centers??

System Design Performance Considerations

Where does your application live? across....

System Design Performance Considerations

- Number of blade Centers
- Number of blades in each Blade Center
- Number of processors in each Blade or Motherboard
- Number of cores in each processor
- Processor Frequency
- Per core:
 - Order of superscalars
 - Number of Registers
 - Bandwidth between register
 - File and the Functional Unit
- Memory design
- Bandwidth between all these components

Blade Centers

- A blade center OR group of blade centers could be a "cloud"
- This # affects the blade centers' networking issues:
 - More bandwidth & less latency means "better communication"
 - If the blade centers are connected to form a "cloud" for intensive computation:
 - Processes are tightly coupled: There is a lot of communication to achieve cooperative work
 - Maximizing network performance would maximize the cloud efficiency and productivity

Blades/Blade Center

- Again it is a matter of intra-blade center networking
 - bandwidth and latency issues in the link connecting the blades, like the backplane

Processors/Blade

- Each Processor has cores, L1 & L2 caches.
 - Both caches connected to/share/retrieve/write data to same L3 cache.
 - The network pipe between processors & L3 cache requires bandwidth and latency good enough to serve all processors.

- Especially if they were to do parallel processing and exchange data.
- Having the data on the same processor chip would have saved this communication & data transformation delay.

Simple view of a dual-core blade

Cores/Processor

- Each processor has cores that share L1 cache & L2 cache.
 - They are shared resources between the cores.
 - Again bandwidth & latency of the network pipes connecting the cores to the caches affects the overall functionality.
- There are single-core, dual-core, quad-core, processors
- A blade with multiple processors is called Symmetric Multiprocessor Machine (SMP)

Why a Multi-core Processor?

- Problem: How much faster can a processor get?
 - Towards the early 2000's we hit a "frequency wall" for processors.
 - Processor frequencies topped out at 4 GHz due to the thermal limit of Silicon.

Why a Multi-core Processor?

- Solution : More chips in Parallel!
 - Enter Multicore.
 - Cram more processing units into the chip rather than increase clock frequency.
 - Traditional processors are available with up to Quad and Six Cores.
 - The Cell Broadband Engine (Playstation 3) has 9 cores.
 - Intel recently announced a 48-core processor.

Multicore processors

- Have fully functioning processor "cores" in a processor.
- Have individual L1 and shared L2 caches.
- OS and applications see each core as an individual processor.

Applications have to be specifically rewritten for optimized performance.

Design Concerns: processor frequency

Frequency

- It is the clock speed of the processor
- The faster the clock speed, the more instruction the processor can execute at a given time

Core Design (1/4)

- Order of superscalars
 - Superscalar of a core is divided at levels:
 - A level-x core is the one with x functional units.
 - The more functional units:
 - the more parallelism the system can do &
 - the less is the time spent on execution.

Core Design (2/4)

- Number of Registers
 - Registers hold temporary values that are needed by the processor to finish the current instruction it is executing.
 - The more the number of registers:
 - the less the (register spill) &
 - the less instructions there are &
 - the less the memory accesses.

Core Design (3/4)

- Number of Registers
 - Example:
 - Suppose we have 2 registers R1 and R2 and 2 instructions: (add b,a,c) and (mult d, a, c)
 - Execution:
 - Load a in R1 → Load c in R2
 - 1) Now: need to save result (b) into a register. We have a Register Spill.
 - » Solution: free one of the registers by storing its value to memory;
 - » say we free R1: Store R1 \rightarrow Put b in R1
 - 2) Now: to execute the second instruction: Load (a) from memory again in R1, for example.
 - Problem: there is fewer # of registers than # of instructions to execute and we face
 Register Spill (i.e. there is not enough registers for the values)
 - we end up having more instructions that load and store from/to memory.
 - More instructions = delay in execution time & more memory load/store (EXPENSIVE!!!!).

Core Design (4/4)

Bandwidth between register file and the Functional Unit

- This Bandwidth of the network, the number of buses, between the register file and the functional unit.
- Needs to be big enough to utilize communication between the functional units and the register file.
- Some ALUs may be assigned no jobs and they become a wasted resource.

Design Concerns

Why do we need to worry about the following details when we design a core?

L1 Cache

- Size
- Bandwidth between (processor & L1 Cache)
- Latency

L2 Cache

- Size
- Bandwidth between (L1 & L2 Caches)
- Latency

L3 Cache

- Size
- Bandwidth between (L2 & L3 Caches)
- Latency

RAM memory

- Size
- Bandwidth between (L3 Cache & RAM)
- Latency

Disk

- Size
- Bandwidth between (RAM & Disk)
- Latency

Design Concerns

- Answer: depending on the application, the properties of the different memory components need to be specified.
- A transaction application's needs of resources is very different from those of scientific application.
 - Transaction applications are usually **Disk Bound**: most of the data is stored on Disk.
 - Requirements: fast disk. High bandwidth and low latency from/to disk and memory.
- Scientific applications are usually processor Bound: dependent on speed of the central processor.
 - Requirements: fast processor & fast L1 cache access.

Example: Given This Data.....

Time = (Instructions * Ave Clocks Per Instruction) * Clock Cycle Time

If 40% of all instructions are memory instructions, then:

Time = (0.6(Instructions) * Ave Clocks Per Other Instruction + 0.4(Instructions) * Ave Clocks Per Memory Instruction) * Clock Cycle Time

Example: Given This Data.....

Design Concerns

- As the example demonstrates a process execution time is dependent on the speed of the different computer components
- Different applications could be:
 - Disk bound
 - Memory bound
 - processor bound
- The system design should serve the application accordingly to reduce the computation time and utilize resources usage

Towards Faster Networks

- Remember the memory hierarchy?
- Networks are THE slowest form of data transfer.
- Researchers sent 4 GB of data faster using a pigeon and a thumb drive than using broadband

BBC News, SA pigeon 'faster than broadband'

High BW & Speed Networks

- Server and cluster backbones typically need fast interconnects
- Gigabit Ethernet
 - 10 Gigabit
 - 100 Gigabit
- Myrinet
- Infiniband

Gigabit Ethernet

- Known as "IEEE Standard 802.3z"
- Offers 1 Gbps raw bandwidth
- Speed: (10 x speed of fast Ethernet) (100 x speed of regular Ethernet)
- 1 Gig Ethernet uses UTP cables
- 10 Gig Ethernet and 100 Gig Ethernet are emerging technologies, typically require fiber optical cables

Myrinet

- High-speed Local Area Network Interconnect
- Typically requires two fiber optic cables per node (upstream and downstream)
- Offers low-latency networking with low protocol overhead @ 1.9 Gbps
- Next Generation (Myri-10G) is 10 Gbps.

Infiniband

- High-bandwidth interconnect primarily for processors to high performance I/O devices
- InfiniBand offers point-to-point bidirectional serial links which forms a switched fabric
- Upto 120 Gbps theoretical bandwidth

Carnegie Mellon Oatar