Carnegie Mellon

Introduction to Cloud Computing

Parallel Processing |
15-319, spring 2010
7t Lecture, Feb 2

Majd F. Sakr

. . 54d, l=aaaln
15-319 Introduction to Cloud Computing Spring 2010 © ﬁﬁi(i‘f‘\ﬁ:mﬁm;.
o r L . L <

Lecture Motivation

m Concurrency and why?
m Different flavors of parallel computing

m Get the basic idea of the benefits of concurrency and the
challenges in achieving concurrent execution.

15-319 Introduction to Cloud Computing Spring 2010 © (‘,“-?:furi(;\li-‘lﬂlibll[}'ll‘li-‘
s - - L < <

Carnegie Mellon

Lecture Outline

What is Parallel Computing?

Motivation for Parallel Computing
Parallelization Levels - granularities
Parallel Computers Classification

Parallel Computing Memory Architecture

Parallel Programming Models

. . L agd, l=analy
15-319 Introduction to Cloud Computing Spring 2010 © ﬁﬁ_irﬁxﬁ:m”m“;.

Carnegie Mellon

L A -

What is Parallel Computing?

instructions

>

time

instructions

4
15-319 !ntroductlon to Cloud Computing : Spring 2010 © ¢, negie Mellon Qatar

Carnegie Mellon

Parallel Computing Resources

m Multiple processors on the same computer
m Multiple computers connected by a network
m Combination of both

instructions

- | () L L L L — CPU
Problem [™—{|||{[|| || ... — CPU
..... ﬁ CPU

. . |a¢d ,ql l=analy
15-319 Introduction to Cloud Computing Spring 2010 © mﬁiﬁ:‘;ﬁ;m”m“;.

Carnegie Mellon

History of Parallel Computing

Parallel Systems 1998: 2nd
made of off the Supercomputer
shelf processors || (ASCI Blue Pacific) 100 trillion
Interest (e.9. Beowulf (by IBM, 3 trillion Operations/second
Started Clusters) operations/s) %
1950 1960 1970 1980 1990 2000 2004 Tod ay
\ J
/Y\ %
Clusters & 1997: 1st - /\
shared memory & Couripe;r?ies supercomputer | | 3" Supercomputer Parallel
multiprocessors began selling (ASCI Red) (ASCI While) Computing based
working on Parallel " bv IBM. 10 trli on multi-core
shared data (1 trillion (by IBM, 10trillion processors
Computers operations/second) operations/second)

. . l=aaaly
15-319 Introduction to Cloud Computing Spring 2010 © ilz;ff:)im\ﬁ:m{fn >

Carnegie Mellon

When can a computation be Parallelized? (1/3)

m When using multiple compute resources to solve the
problem saves it more time than using single resource

m At any moment, we can execute multiple program chunks
= Dependencies

15-319 Introduction to Cloud Computing Spring 2010 © (‘,“-?:furi(;\li-‘lﬂlibll[}'ll‘li-‘
s - - L < <

Carnegie Mellon

When can a computation be Parallelized? (2/3)

m Problem’s ability to be broken into discrete pieces to be solved simultaneously
® Check data dependencies

To Do:
adda, b, ¢
Initial values: a=1 b=3 c=-1 e=2 d=???
mult d, a, e
Sequential Parallel
adda, b, c adda, b, c multd, a, e
+ c=-1 b=3 + c=-1 a=1 X e=2

<:~> a=2 . a=2 . oz

g | d=2 I
mult d, a, e
a=2 X e=2
-
| d=4

_— e ——
_) l=:aaaly
15-319 Introduction to Cloud Computing Spring 2010 © ;‘j:’: im\sl\ﬁ'i;m” o

Carnegie Mellon

When can a computation be Parallelized? (3/3)

m Problem’s ability to be broken into discrete pieces to be solved simultaneously

® Check data dependencies

Initial values: a=77??

Sequential

11
Y

C=- e=2

adda, b, c

15-319 Introduction to Cloud Computing

(D)
£
mult d, e, f
x f=0
<:\4——‘1
| 420 |

add a, b, c

b=3 + c=-1

<:i** a=2

To Do:
adda, b, ¢
=0 d=???
mult d, e, f
Parallel
mult d, e, f
e=2 x = =0

el |

e — ———

/

Jadgd, :}LAS\LJFI.En.?_aL).
Spring 2010© negie Mellon Qatar

Carnegie Mellon

Lecture Outline

Motivation for Parallel Computing
Parallelization Levels

Parallel Computers Classification

Parallel Computing Memory Architecture

Parallel Programming Models

15-319 Introduction to Cloud Computing Spring 2010 © (‘,“-?:furi(;\li-‘lﬂlibll[}'ll‘li-‘
s - - L < <

Uses of Parallel Computing (1/2)

m Modeling difficult scientific and engineering
problems

Physics: applied, nuclear, particle, condensed matter,
high pressure, fusion, photonics

Geology
Molecular sciences

Electrical Engineering: circuit design, condense
matter, high pressure

m Commercial applications

Databases, Datamining
Network video and multi-national corporations
Financial and economic modeling

15-319 Introduction to Cloud Computing

Carnegie Mellon

=

. i gd ol s lminaly
Spring 2010 © Carnegie Mellon Qatar

Uses of Parallel Computing (2/2)

m User Applications
" |mage and Video Editing
= Entertainment Applications
= Games & Real-time Graphics
= High Definition Video Playback
= 3-D Animation

12
15-319 Introduction to Cloud Computing Spring 2010 © (-,“_f:fmk;“;;l]:,m,,_n‘”;
o - L . L <

Carnegie Mellon

Why Parallel Computing? (1/2)

m Why not simply build faster serial computer??

" The speed at which data can move through hardware determines

the speed of a serial computer. So we need to increase proximity
of data.

" Limits to miniaturization: even though

" Economic Limitations: cheaper to use multiple commodity

processors to achieve fast performance than to build a single fast
processor.

. . L agd, l=analy
15-319 Introduction to Cloud Computing Spring 2010 © ﬁﬁ_irﬁxﬁ:m”m“;.

Carnegie Mellon

Why Parallel Computing? (2/2)

m Saving time
m Solving large complex problems
m Take advantage of concurrency

15-319 Introduction to Cloud Computing Spring 2010 © (‘,“-?:itri(;\li;lﬂli)ll[Yatar
o - L . L <

Carnegie Mellon

How much faster can CPUs get?

m Towards the early 2000’s we hit a “frequency wall” for
processors.

m Processor frequencies topped out at 4 GHz due to the
thermal limit of Silicon.

£ CPU-Frequency 1993 - 2005
'hn.;pdgvﬁalra‘; AMD and Irtel

4000

3500

000

2500

2000

1500

g
2
:
=
g

1000
00

. . 54d, l=aaaln
15-319 Introduction to Cloud Computing Spring 2010 © ﬁﬁi(i‘f‘\ﬁ:mﬁm;.
o r L . L <

Solution : More chips in Parallel!

m Enter Multicore.

m Cram more processors into the chip rather than increase
clock frequency.

m Traditional CPUs are available with up to Quad and Six
Cores.

m The Cell Broadband Engine (Playstation 3) has 9 cores.
m Intel’s 48-core processor.

Dual CPU Core Chip
i N
CPU Core CPU Core
and and
L1 Caches L1 Caches

Bus Interface
and

L2 Caches

© Intel

=g 9d s slea g l=manaly,

15-319 Introduction to Cloud Computing Spring 2010 © Earnesie Mellon Oatar
o {_ L Y L <

Carnegie Mellon

Multicore CPUs

m Have fully functioning CPU “cores” in a processor.
m Have individual L1 and shared L2 caches.

m OS and applications see each core as an individual
processor.

m Applications have to be specifically rewritten for
performance.

Core 1 | Core 2| Core 3| Core 4

L2 Cache 1 L2 Cache 2

Front Side Bus

Source: hardwaresecrets.com

_ _ |a¢d ,ql l=analy
15-319 Introduction to Cloud Computing Spring 2010 © f“:ff:”:‘\fﬁ;ﬁ[Yalar

Carnegie Mellon

Graphics Processing Units (GPUs)

m Massively Parallel Computational engines for Graphics.

m More ALUs, less cache — Crunches lots of numbers in
parallel but can’t move data very fast.

m Is an “accelerator”, cannot work without a CPU.
m Custom Programming Model and API.

Control ALU ALU [
7] 1
ALU ALU :
(=]
(1)
=
[|
CPU GPU

© NVIDIA

© NVIDIA

15-319 Introduction to Cloud Computing Spring 2010 © Earnesie Mellon Oatar
r_- ™] =l ¢ oile

Carnegie Mellon

Lecture Outline

Parallelization Levels

Parallel Computers Classification

Parallel Computing Memory Architecture
Parallel Programming Models

15-319 Introduction to Cloud Computing Spring 2010 © Earnesie Mellon Oatar
s - L . L <

Carnegie Mellon

Terms

m Program: an executable file with one or multiple tasks.

m Process: instance of a program in execution. It has its own address space, and
interacts with other processes only through communication mechanisms
managed by the OS.

m Task: execution path through the address space that has many instructions.
(Some times task and process are used interchangeably).

m Thread: stream of execution used to run a task. It’s a coding construct that does
not affect the architecture of an application. A process might contain one or
multiple threads all sharing the same address space and interacting directly.

m Instruction: a single operation of a processor. A thread has one or multiple
instructions.

. . |a¢d ,ql l=analy
15-319 Introduction to Cloud Computing Spring 2010 © mﬁiﬁ:‘;ﬁ;m”m“;.

Carnegie Mellon

Program Execution Levels

15-319 Introduction to Cloud Computing

Program
| - Process
// Thread
/ /
\
\ AN
N b
\\ \\\ N
N -

Spring 2010 © Carnegie Mellon Qatar

Carnegie Mellon

Parallelization levels (1/8)

Data-level parallelism
Task-level parallelism
Instruction-level parallelism

Bit-level parallelism

15-319 Introduction to Cloud Computing Spring 2010 © Earnesie Mellon Oatar
o - L . L <

Parallelization levels (2/8)

m Data-level Parallelism
= Associated with loops.
= Same operation is being performed on different partitions of the same data structure.

® Each processor performs the task of its part of the data.
= Ex:add x to all the elements of an array

® But, can all loops can be parallelized?

= Loop carried dependencies: if each iteration of the loop depends on results from the
previous one, loop can not be parallelized.

X * AO o o A?Q -
Time
Task 1: =
X % A, A,
Task2: X * =
A A \
Task3: X % = L
Ap " Ay
Task4: X * =
Agp " Ag
Time

15-319 Introduction to Cloud Computing Spring 2010 © (‘,“-?:furi(;\li-‘lﬂlibll[}'ll‘li-‘
s - - L < <

Carnegie Mellon

Parallelization levels (3/8)

m Task-level Parallelism

= Completely different operations are performed on the same or different'\/\
sets of data.

= Each processor is given a different task.

= As each processor works in its own task, it communicates with other
processors to pass and get data.

Serial Task-Level Parallelized
Task Time Task Time
Xx=a+b Xx=a+b

f=a*b*c f=a*b*c

y=(x*d)+e y=(x*d)+e

7= y? 7= y?

m=a+b m=a+b

p=Xx+c p=Xx+c
Total Time Total Time

15-319 Introduction to Cloud Computing

Spring 2010 © Carnegie Mellon Qatar

Parallelization levels (4/8)

m Instruction-level parallelism (ILP)

= Reordering the instructions and combining them into groups so the
computer can execute them simultaneously.

= Example: Serial
. If each instruction takes 1 time unit, sequential
performance requires 3 time units.
X=a+h |
Time
y=c+d
Z=X+y Instruction-level Parallelized
. The first two instructions are independent, so they can

performed simultaneously.

. The third instruction depends on them so it must be performed
afterwards.

. Totally, this will take 2 time units.
Time

15-319 Introduction to Cloud Computing Spring 2010 © (‘,“-?:itri(;\lg‘l..l:)ll[}'l]‘li-‘
s - - L < <

Parallelization levels (5/8)

m Micro-architectural techniques that make use of ILP include
Instructions pipelining:

Instruction Pipeline
= Increasing the instruction throughput by # Stage
splitting the instruction into different 1 IF | ID | EX |MEM| WB
stages. 2 F | D | EX MEM| WB
= Each pipeline stage corresponds to a 3 IF | ID | EXMEM WB
different action the processor performs 4 IF | ID | EX [MEM
on that instruction in that stage. 5 F |l D | Ex
= Machine with N pipelines can have up to Clock 1l 213lals |67
N different instructions at different Cycle

stages of completion.

= Processing rate of each step takes less IF: Instruction Fetch
time than processing the whole ID: Instruction Decode
instruction (all stages) at once. A part of EX: Execute
each instruction can be done before the '
next clock signal. This reduces the delay MEM: Memory Access
of waiting for the signal. WB: Write Back to Reister

_ _ |a¢d ,ql l=analy
15-319 Introduction to Cloud Computing Spring 2010 © f“:ff:”:‘\fﬁ;ﬁ[Yalar

Carnegie Mellon

Parallelization levels (6/8)

. . IF| IF | IF
m Instruction-level parallelism (ILP) (* >
Order of superscalars (D] 1D 1D >
= Superscalar of a core is divided at levels: (RD !D RD>
= A level-x core is the one with x functional \
units | Dispatch Buffer

‘ P R
" The more functional units: @ - @ @
MEM1
= the more parallelism the system can
do & @ Execute
. . . Stages
= the less is the time spent on execution. @

Re-Order Buffer

| :

@vB WB W@

15-319 Introduction to Cloud Computing Spring 2010 © (‘,“-?:itri(;\lg‘l..l:)ll[}'l]‘li-‘
s - - L < <

Parallelization levels (7/8)

m Micro-architectural techniques that make use of ILP include

Superscalar processors: Instruction Pipeline
Stage
= Implements ILP within a single 1 E 1o Tex Ivem we
processor so that a processor can ; =l Tex mEnwe
execute more than one instruction
. 3 IF | ID | EX MEM| WB
at a time (per clock cycle).
4 IF | ID | EX MEM| WB
5 IF | ID | EX [MEM WB
= It does that by sending multiple 6 E | D | EX IMEMIWB
instructions to redundant functional 7 E | o | ex Mem
units on the processor g E | D | Ex MEM
simultaneously. These functional unit : = e
are not separate processors! They
: 10 IF | ID | EX
are execution resources (ALU,
multiplier, ...) within a single g'o‘ik 1| 2|3 4|5]|6]7
ycle

processor. This enables the

processor to accept multiple 2 instructions are fetched and sent at a
instructions per clock cycle. time, so 2 instructions can be completed
per clock cycle!

_ _ |a¢d ,ql l=analy
15-319 Introduction to Cloud Computing Spring 2010 © r:ff:”:ﬂ\fﬁlﬁ[Yalar

Carnegie Mellon

Parallelization levels (8/8)

m Bit-level parallelism

¥YVU00
44y

Eedd o,

® Based on increasing the word size of the processor.

= Reduces the number of instructions required to perform an operation on
variables whose sizes are bigger than the processor word size.

= Example:

000

= Adding 2 16-bit integers with an 8-bit processor requires 2 instructions
= Adding them with a 16-bit processor required one instruction

deddd

1040000

Wddds o

- -
W e ._—\=...:__.:.
T T e m — 1, s tm "
=] " e == Cay | e S =] =g s 5
MC_Tee W M BB T eI LE-BE — — D o v o P e
e —— e = Pt T T el g e ooty o ol s e e R A '
= - ro W R el — o = W e R T L = y A |
- e | Co o T = g el e R N =K e T R B ey B e =t oy
-ci“l-:‘r'_:"_' | e — . et o e A T T e A e R W
s
e ==
-— pa
% =T
==

Spring 2010 © Carnegie Mellon Qatar

15-319 Introduction to Cloud Computing

Carnegie Mellon

Lecture Outline

Parallel Computers Classification
Parallel Computing Memory Architecture

Parallel Programming Models

15-319 Introduction to Cloud Computing Spring 2010 © Earnesie Mellon Oatar
o - L . L <

Carnegie Mellon

Parallel Computers Classification (1/5)

m Flynn's Classical Taxonomy

= Differentiate between the architectures of multi-processor computers
based on two independent aspects: Instructions streaming to a processor
and Data the processor uses.

Multiple

Instruction Instruction

31
15-319 Introduction to Cloud Computing Spring 2010 © (‘,“_f:‘:“;‘;ffa\l;;l"l:,"[flm'.
o - L . L <

Carnegie Mellon

Parallel Computers Classification (2/5)

m Flynn's Classical Taxonomy

= Differentiate between the architectures of multi-processor computers
based on two independent aspects: Instructions streaming to a processor
and Data the processor uses.

SISD

» Serial (non-parallel) computer

« Deterministic execution

» Older generation mainframes, minicomputers
& workstations, most modern day PCs

Multiple

Instruction

Instruction
%,

Multiple
Data

32

15-319 Introduction to Cloud Computing Spring 2010 © Earnesie Mellon Oatar
o - L . L <

Carnegie Mellon

Parallel Computers Classification (3/5)

m Flynn's Classical Taxonomy

= Differentiate between the architectures of multi-processor computers
based on two independent aspects: Instructions streaming to a processor
and Data the processor uses.

Multiple

Instruction

Instruction

SIMD

*A type of parallel computer
» Synchronous (lockstep) and deterministic execution

* Best suited for specialized problems characterized by a high
degree of regularity, such as graphics/image processing.

*Most modern computers, particularly those with graphics
processor units (GPUS)

33
. . = gy glia g0 l=analy
15-319 Introduction to Cloud Computing Spring 2010 © (]eu'?:itr?f:‘f\li;lulimtll;u;nf‘

Carnegie Mellon

Parallel Computers Classification (4/5)

m Flynn's Classical Taxonomy

= Differentiate between multi-processor computer architectures based on
two independent dimensions: Instructions streaming to the processor and

Data the processor uses. MISD

« Single data stream is fed into multiple processing units.

« Each processing unit operates on the data independently using
independent streams of instructions.

* Few examples exist:

One is the experimental Carnegie-Mellon C.mmp computer (1971).

Multiple

Instruction

Instruction
Q
S

Multiple
Data

34

15-319 Introduction to Cloud Computing Spring 2010 © Earnesie Mellon Oatar
s - L . L <

Carnegie Mellon

Parallel Computers Classification (5/5)

m Flynn's Classical Taxonomy

= Differentiate between the architectures of multi-processor computers

based on two independent aspects: Instructions streaming to a processor
and Data the processor uses.

Multiple

Instruction Instruction

The most common type of parallel computing.

Execution can by synchronous or asynchronous, deterministic or
non-deterministic

Many MIMD architecture include SIMD execution sub-components

Examples: Most current supercomputers, networked parallel
computer clusters and grids, multi-processor SMP computers,
multi core PCs

_ . i g .3:,\.[.¢a$§§FLEn.P_alA.
15-319 Introduction to Cloud Computing Spring 2010 © Earnesie Mellon Oatar

Carnegie Mellon

Lecture Outline

[|
m Parallel Computing Memory Architecture
m Parallel Programming Models

15-319 Introduction to Cloud Computing Spring 2010 © Earnesie Mellon Oatar
o {_ L . L <

Carnegie Mellon

Parallel Computing Memory Architecture (1/9)

m Shared Memory Architecture
m Distributed Memory Architecture

m Hybrid Distributed-Shared Memory Architecture

37
15-319 Introduction to Cloud Computing Spring 2010 © (-,“_?:f“:;ff’“;;l"ﬂm[,,_"‘”'.
arnegie! Jat:

Carnegie Mellon

Parallel Computing Memory Architecture (2/9)

m Shared Memory Architecture

" Processors perform their operations independently but they share
the same resources since they have access to all the memory as
global address space.

= When a processor changes the value of a location in the memory,
the effect is observed by all other processors.

= Based on memory access times: Shared memory machines can be
divided into two main classes UMA and NUMA.

_ _ |a¢d ,ql l=analy
15-319 Introduction to Cloud Computing Spring 2010 © rﬁﬁfirr‘\ﬁ;ﬁ[Yalar

Parallel Computing Memory Architecture (3/9)

m Shared Memory Architecture

= Uniform Memory Access:
CPU
= Equal access rights and access
times to memory.
= Represented by Symmetric (Main -
Multiprocessor (SMP). CPU L Memory
= Sometimes called Cache
Coherent UMA (CC-UMA).
CPU

15-319 Introduction to Cloud Computing Spring 2010 © (‘,“-?:itri(;\lg‘l..l:)ll[}'l]‘li-‘
s - - L < <

Carnegie Mellon

Parallel Computing Memory Architecture (4/9)
m Shared Memory Architecture

" Non-Uniform Memory Access:

Usually delivered by physically linking two or more SMPs so they can access
the memory of each other directly.

Not all processors have equal access time to all memories.

Memory access across the physical link is slow.

Called Cache Coherent NUMA (CC-NUMA) if cache coherency is maintained.

\ -
Main cpu | cpu CPU | CPU Main
Memory Memory
CPU | cpu CPU | CPU
J
Bus Interconnect
- \ -
Main CPU | CPU CcPU | cPu Main
Memory Memory
) CPU | CPU CPU | cPU

15-319 Introduction to Cloud Computing Spring 2010 © Earnesie Mellon Oatar
o {_ L Y L <

Carnegie Mellon

Parallel Computing Memory Architecture (5/9)

Shared Memory Architecture

m Advantages

" Program development can be
simplified. Global address space
makes referencing data stored
in memory similar to traditional
single-processor programs.

" Memory is proximate to CPUs
which makes data sharing
between tasks fast and uniform.

m Disadvantages

= Lack of scalability between
memory and CPUs.

= Adding more CPUs can
increases on the path
between shared memory
and CPUs.

" Maintaining data integrity is
complex.
= Synchronization is required

to ensure correct access of
memory.

15-319 Introduction to Cloud Computing

Spring 2010 © Carnegie Mellon Qatar

Carnegie Mellon

Parallel Computing Memory Architecture (6/9)

m Distributed Memory Architecture

® Each processor has its own address space (local memory). Changes done
by each processor is not visible by others.

® Processors are connected to each other over a communication network.

= The program must define a way to transfer data when it is required
between processors.

CPU Main CPU Main
Memory Memory

CPU Main CPU Main
Memory Memory

15-319 Introduction to Cloud Computing Spring 2010 © (‘,“-?:itri(;\li;lﬂli)ll[Yatar
o - L . L <

Parallel Computing Memory Architecture (7/9)

Distributed Memory Architecture

m Advantages m Disadvantages
o o = Data communication between
" Scalability in memory size is processors is the programmer’s
along number of processors. responsibility.
" Each processor has fast access = |t’s difficult to map existing data

to its own memory with no
interference or overhead.

structures, based on global
memory, to such organization.

= Cost _effeCtiVGHESSI uses = Challenge: How to distribute a
multiple low Cost processors task over multiple processors
and networking. (each with its own memory), and

then reassemble the results from
each processors into one
solution?

_ _ |a¢d ,ql l=analy
15-319 Introduction to Cloud Computing Spring 2010 © rﬁﬁfirr‘\ﬁ;ﬁ[Yalar

Parallel Computing Memory Architecture (8/9)

m Hybrid Distributed-Shared Memory Architecture
= Used in most of today’s fast and large parallel computers
" The shared memory components are SMP nodes.
® The distributed memory component is a network of SMP nodes.

= Advantages and disadvantages are the common points between the two
architectures.

CPU | CPU Main CPU | CPU Main
Memory Memory

CPU | CPU CPU | CPU

CPU | CPU Main CPU | CPU Main
Memory Memory

CPU | CPU CPU | CPU

. . 54d, l=aaaln
15-319 Introduction to Cloud Computing Spring 2010 © ﬁﬁi(i‘f‘\ﬁ:mﬁm;.
o r L . L <

Parallel Computing Memory Architecture (9/9)

m Hybrid Distributed-Shared Memory Architecture

" Processors on an SMP machine address the machine's memory as
global.

= Each SMP knows only about the SMP’s own memory, but not the
memory on another SMP.

" Therefore, network communications are required to move data
from one SMP to another.

cPu| cPu Main cPU| cpuU Main
Memory Memory

crPu| cpu cPu| cPu

cPU| cpPU Main cPU| cpPU Main
Memory Memory

cPU| cpU cPU| cpU

15-319 Introduction to Cloud Computing Spring 2010 © (‘,“-?:itri(;\li;lﬂli)ll[Yatar
o - L . L <

Carnegie Mellon

Lecture Outline

Parallel Programming Models

rlﬁﬁ_ﬂJEJ-“’S\}-“:LEQ-ﬂll

15-319 Introduction to Cloud Computing Spring 2010 © Earnesie Mellon Oatar
o {_ L Y L <

Carnegie Mellon

Parallel Programming Models (1/12)

m What is Programming Model?

= A programming model presents an abstraction of the computer
system.

= A programming model enables the expression of ideas in a

specific way. A programming language is then used to put these
ideas in practice.

m Parallel Programming Model:

= Software technologies that are used as an abstraction above
hardware and memory architectures to express parallel
algorithms or to match algorithms with parallel systems.

_ _ |a¢d ,ql l=analy
15-319 Introduction to Cloud Computing Spring 2010 © rﬁﬁfirr‘\ﬁ;ﬁ[Yalar

Carnegie Mellon

Parallel Programming Models (2/12)

m Shared Memory Model
m Threads Model

m Data Parallel Model

[|

[|

Message Passing Model

Others...
= SPMD
= MPMD
L 5a ol s manly
15-319 Introduction to Cloud Computing Spring 2010 © (I;u-?:i:rié }ﬁ;m[ﬁ;.;.

Carnegie Mellon

Parallel Programming Models (3/12)

m Shared Memory Model

® Processors read from and
write to variables stored in a
shared address space
asynchronously.

= Mechanisms such as locks
and semaphores are used to
control access to the shared
memory.

15-319 Introduction to Cloud Computing

Xx=a+h
y=c+d

Z=X+y

Shred

Memory

—h
o000

‘ I=b-a
4L/ m=2+d

XxX=a*?2

f=5

z=x-f

: =i 9d 5 sla g0y l=manaly,
Spring 2010 © Carnegie Mellon Qatar

Parallel Programming Models (4/12)

m Shared Memory Model

= Advantage: Program development can be simplified since no
process owns the data stored in memory.

= Because all processors can access the same variables,
referencing data stored in memory is similar to traditional

single-processor programs.
= Disadvantage: it’s difficult to understand and manage data locality.

= Keeping data local to the processor that is working on it
conserves memory access to this processor. This causes bus
traffic when multiple processors are trying to access the same

data.

. . |a¢d ,ql l=analy
15-319 Introduction to Cloud Computing Spring 2010 © mﬁiﬁ:‘;ﬁ;m”m“;.

Carnegie Mellon

Parallel Programming Models (5/12)
m Threads Model

= Asingle process is divided into multiple, concurrent execution paths, each
path is a thread.

" Process execution time is reduced because threads are distributed and
executed on different processors concurrently.

Serial Threaded

Task Time Task Time
Function 1 Function 1 Tl
Function 2 Function 2 T2
Function 3 Function 3 T3
Function 4 Function 4 T4

Total Time Total Time

15-319 Introduction to Cloud Computing gl s gm0 AN,

Spring 2010 © Carnegie Mellon Qatar

Parallel Programming Models (6/12)

m Threads Model: How does it work?

= Each thread has local data that is specific to this thread and not
replicated on other threads.

® But also, all threads share and communicate through the global
memory.

®= Results of each threads execution can then be combined to form
the result of the main process.

" Threads are associated with shared memory architectures.

" |mplementations: POSIX Threads and OpenMP

. . L agd, l=analy
15-319 Introduction to Cloud Computing Spring 2010 © ﬁﬁ_irﬁxﬁ:m”m“;.

Carnegie Mellon

Parallel Programming Models (7/12)
m Threads Model: Challenges?

" Anissue is load balancing between threads.

= What happens when a thread finishes with a region of code? Wait for
other threads? Help other threads with the load?

= Solution: Different scheduling algorithms (for example in loop
context):

= Static Scheduling: each threads execute n iterations and then wait
for the other threads to finish n iterations.

= Dynamic scheduling: n iterations of the remaining iterations are
dynamically assigned to threads that are idle.

= Guided scheduling: each time a thread finishes executing it is
assigned some iterations:

remaining iterations

iterations assigned = ,
threads

. . L agd, l=analy
15-319 Introduction to Cloud Computing Spring 2010 © ﬁﬁ_irﬁxﬁ:m”m“;.

Parallel Programming Models (8/12)

m Data Parallel Model

= A dataset (ex: an array) is divided into chunks, operations are performed on each chunk
concurrently.

= A set of tasks are carried out on the same data structure. But, each task is performed on a
different part of this data structure.

® Tasks that are carried out on the same part of the data structure do the same operations on
each instance of this data. (ex: multiply each element of the array by 2).

* =
X AO o o A’%Q
Time
Task 1: =
X % A, A,

Task2: X * =

A A \
Task3: X % =]

A7n o A?Q
Task4: X * =

Agp "t Ag

Time

. . L agd, l=analy
15-319 Introduction to Cloud Computing Spring 2010 © ﬁﬁ_irﬁxﬁ:m”m“;.

Parallel Programming Models (9/12)

m Data Parallel Model Implementation

= Data-parallel compilers need the programmer to provide
information that specifies how data is to be partitioned into tasks
and how the data is distributed over the processors.

" On shared memory architectures, all tasks can have access to the
data structure through global memory so the data are not actually
divided.

® On distributed memory architectures, the data structure is divided
into chunks and each chunk resides in the local memory of each
task.

. . L agd, l=analy
15-319 Introduction to Cloud Computing Spring 2010 © ﬁﬁ_irﬁxﬁ:m”m“;.

Carnegie Mellon

Parallel Programming Models (10/12)

m Message Passing Model

= Tasks use their own local memory.

= Tasks can be on the same machine
or across multiple machines.

= Data are exchanges between tasks
by sending and receiving messages.

= Data transfer requires cooperative
operations between processes (ex:
send followed by a matching
receive).

15-319 Introduction to Cloud Computing

Machine 1

Task 1

Machine 2

Task 2

send()

Task 4

recv() \

\

\ Machine 3/

/ send()

Task 5

recv()

/

send()

Task 6

recv()

Spring 2010 © Carnegie Mellon Qatar

Carnegie Mellon

Parallel Programming Models (11/12)

m Single Program Multiple Data
(SPMD):

Program Task Time

" Could be built by combining any

of the mentioned parallel Data Source
programming models. All tasks P/Laskl
may use different data. Fl le—

= All tasks work simultaneously to
execute one single program.

P | Task 2
F2 |«
F3 .

= At any point during execution
time, tasks can be executing the
same or different instructions of
the same program using
different data resources.

F4 P ?sk?»

= Tasks do not always execute all
of the programs, sometimes only
parts of it. P Taskn

_ _ d9d, l=aaaly
15-319 Introduction to Cloud Computing Spring 2010 © ﬁﬁ‘:ﬂiﬁsﬁﬁ:m[ﬁm.
o {_ L Y L <

Carnegie Mellon

Parallel Programming Models (12/12)

m Multiple Program Multiple Data

Program Task Time

(MPMD):
Data Source
= Could be built by combining any ﬁi“skl
of the mentioned parallel Fl e |
programming models.
P2 | Task?
®" Has many programs. The F3 F2 I
programs runs in parallel, but
each task coul.d be performing £l —_
the same or different part of the . P3 | Tasks
program that other tasks
perform.
= All tasks may use different data 09 | Taskn
15-319 Introduction to Cloud Computing Spring 2010 © ﬁﬁ:;&m\ﬁ;ﬁﬁ:%

Carnegie Mellon

Lecture Outline

15-319 Introduction to Cloud Computing Spring 2010 © ﬁﬁfﬂi‘fﬂ\ﬁ;"l[ﬁm.
o !- L Y L <

Carnegie Mellon

Next Lecture

Parallel Computing Designh Considerations
Limits and Costs of Parallel Computing
Parallel Computing Performance Analysis

Examples of Problems Solved By Parallel Computing

15-319 Introduction to Cloud Computing Spring 2010 © (‘,“-?:furi(;\li-‘lﬂlibll[}'ll‘li-‘
s - - L < <

References

m http://en.wikipedia.org/wiki/Parallel programming mod
el

m http://www.buyya.com/cluster/v2chapl.pdf

m https://computing.linl.gov/tutorials/parallel comp/

m http://www.acm.org/crossroads/xrds8-
3/programming.html

m http://researchcomp.stanford.edu/hpc/archives/HPCpar
allel.pdf

m http://www.mcs.anl.gov/~itf/dbpp/text/node9.html
m http://en.wikipedia.org/wiki/Parallel computing

m http://www.azalisaudi.com/para/Para-Week2-
TvypesOfPara.pdf

61

15-319 Introduction fo Cloud ngm';}utmg:. Spring 2010 © Carnegie Mellon Qatar

http://en.wikipedia.org/wiki/Parallel_programming_model
http://en.wikipedia.org/wiki/Parallel_programming_model
http://www.buyya.com/cluster/v2chap1.pdf
https://computing.llnl.gov/tutorials/parallel_comp/
http://www.acm.org/crossroads/xrds8-3/programming.html
http://www.acm.org/crossroads/xrds8-3/programming.html
http://researchcomp.stanford.edu/hpc/archives/HPCparallel.pdf
http://researchcomp.stanford.edu/hpc/archives/HPCparallel.pdf
http://www.mcs.anl.gov/~itf/dbpp/text/node9.html
http://en.wikipedia.org/wiki/Parallel_computing
http://www.azalisaudi.com/para/Para-Week2-TypesOfPara.pdf
http://www.azalisaudi.com/para/Para-Week2-TypesOfPara.pdf

	Parallel Processing I�15-319, spring 2010�7th Lecture, Feb 2nd
	Lecture Motivation
	Lecture Outline
	What is Parallel Computing?
	Parallel Computing Resources
	History of Parallel Computing
	When can a computation be Parallelized? (1/3)
	When can a computation be Parallelized? (2/3)
	When can a computation be Parallelized? (3/3)
	Lecture Outline
	Uses of Parallel Computing (1/2)
	Uses of Parallel Computing (2/2)
	Why Parallel Computing? (1/2)
	Why Parallel Computing? (2/2)
	How much faster can CPUs get?
	Solution : More chips in Parallel!
	Multicore CPUs
	Graphics Processing Units (GPUs)
	Lecture Outline
	Terms
	Program Execution Levels
	Parallelization levels (1/8)
	Parallelization levels (2/8)
	Parallelization levels (3/8)
	Parallelization levels (4/8)
	Parallelization levels (5/8)
	Parallelization levels (6/8)
	Slide Number 28
	Parallelization levels (8/8)
	Lecture Outline
	Parallel Computers Classification (1/5)
	Parallel Computers Classification (2/5)
	Parallel Computers Classification (3/5)
	Parallel Computers Classification (4/5)
	Parallel Computers Classification (5/5)
	Lecture Outline
	Parallel Computing Memory Architecture (1/9)
	Parallel Computing Memory Architecture (2/9)
	Parallel Computing Memory Architecture (3/9)
	Parallel Computing Memory Architecture (4/9)
	Parallel Computing Memory Architecture (5/9)
	Parallel Computing Memory Architecture (6/9)
	Parallel Computing Memory Architecture (7/9)
	Parallel Computing Memory Architecture (8/9)
	Parallel Computing Memory Architecture (9/9)
	Lecture Outline
	Parallel Programming Models (1/12)
	Parallel Programming Models (2/12)
	Parallel Programming Models (3/12)
	Parallel Programming Models (4/12)
	Parallel Programming Models (5/12)
	Parallel Programming Models (6/12)
	Parallel Programming Models (7/12)
	Parallel Programming Models (8/12)
	Parallel Programming Models (9/12)
	Parallel Programming Models (10/12)
	Parallel Programming Models (11/12)
	Parallel Programming Models (12/12)
	Lecture Outline
	Next Lecture
	References

