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Review

 Architectures
 Interconnect

http://www.phys.uu.nl/~steen/web03/sm-mimd.html
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Review

 Shared Memory MIMD 

http://www.phys.uu.nl/~steen/web03/sm-mimd.html
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Review

 Distributed
Memory MIMD

http://www.phys.uu.nl/~steen/web03/dm-mimd.html
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Review

 Hybrids
 Cache-coherent NUMA

http://www.phys.uu.nl/~steen/web03/ccNUMA.html
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High BW & Speed Networks

 Server and cluster backbones typically need fast 
interconnects

 Gigabit Ethernet
 10 Gigabit
 100 Gigabit

 Myrinet
 Infiniband © Barcelona Supercomputing Center



Carnegie Mellon

Spring 2010 ©15-319  Introduction to Cloud Computing

Gigabit Ethernet

 Known as “IEEE Standard 802.3z”
 Offers 1 Gbps raw bandwidth
 Speed: (10 x speed of fast Ethernet)

(100 x speed of regular Ethernet) 
 1 Gig Ethernet uses UTP cables
 10 Gig Ethernet and 100 Gig Ethernet are emerging 

technologies, typically require fiber optical cables 

commons.wikimedia.org/wiki/File:UTP_cable.jpg
http://www.directindustry.com/prod/lapp-group/fiber-optic-cable-17287-404578.html

UTP
Fiber 

optical 
cables
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Myrinet
 High-speed Local Area Network Interconnect
 Typically requires two fiber optic cables per node 

(upstream and downstream)
 Offers low-latency networking with low protocol 

overhead @ 1.9 Gbps (messages in usec range)
 Next Generation (Myri-10G) is 10 Gbps.



Carnegie Mellon

Spring 2010 ©15-319  Introduction to Cloud Computing

Infiniband
 High-bandwidth interconnect primarily for processors to high 

performance I/O devices
 InfiniBand offers point-to-point bidirectional serial links which 

forms a switched fabric
 Upto 120 Gbps theoretical bandwidth (message in usec range)
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Lecture Outline

 Parallel Computing Design Considerations
 Limits and Costs of Parallel Computing
 Parallel Computing Performance Analysis
 Examples of Problems Solved By Parallel Computing
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How to Parallelize
 Automatic vs. Manual Parallelization

 Design Considerations

1. Can the Problem be parallelized?
2. Program’s hotspots & bottlenecks?
3. Partitioning 
4. Communications
5. Synchronization
6. Data Dependencies 
7. Load Balancing
8. Granularity
9. Input/Output

11
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Automatic VS Manual Parallelism

 Mostly, developing parallel programs has been manual. This is 
complex, time consuming, and error-prone process. 

 Parallelizing compiler or pre-processor is used to parallelize 
serial code. This complier usually works in two different ways:

 Fully Automatic: 

The compiler analyzes the source code and specifies parts that could be 
parallelized. 

 Programmer Directed: 

The programmer uses compiler flags to explicitly tell the compiler how to 
parallelize the code. 
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(1) Can the Problem be Parallelized?

 Parallelism Inhibitors:
 Control vs. data dependencies

 Examples:
 Parallelizable Problem: Multiply each element 

of the array by 2
 Non-parallelizable Problem: Fibonacci sequence 

 Handling Data Dependencies

 Parallelism Slow-down:
 Communications bottleneck 

13
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(2) Hotspots & Bottlenecks

 Hotspots:
 What are they?  Account for most of CPU usage
 How to define them in the program? Profiling & Performance 

Analysis
 Parallelism focus should be on these spots 

 Bottlenecks:
 What are they? slow areas
 Can we redesign the algorithm to reduce /eliminate bottlenecks?

14

Source: http://scavenging.wordpress.com/2009/05/

Source: http://zubinmehta.files.wordpress.com/
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(3) Partitioning/Decomposition

 Dividing the problem into chunks/parts of work that can 
be distributed to multiple tasks. 

 Best Partitioning happens where there is minimum I/O & 
communication

 Ways to Partition?

 Domain Decomposition
 Functional Decomposition

15
http://tinypic.com/view.php?pic=a29ah0&s=3
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(3) Partitioning/Decomposition

 Functional 
Decomposition

 The focus is on the 
computation to be 
performed, not on the data 
given to the problem.

 The problem is partitioned 
best on the work that must 
be done. Each task 
computes a part of the 
overall work. 

F1 F3
F2

Loop

Matrix Mult F4

F5

LoopProblem 
Intersection 
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F1
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Task 1
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Loop

Task 2
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Task 3
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Loop
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(3) Partitioning/Decomposition

 Domain Decomposition

 The data given to the problem is divided into chunks. 

 Each chunk is given to a task that performs the operation on it. 
Tasks run in parallel. 

Problem 
Data Set

A0 … A9 A10 … A19 A20 … A29 A30 … A39 A40 … A49

A0 … A9 A10 … A19

Task 2Task 1 Task 5Task 4Task 3

A20 … A29 A30 … A39 A40 … A49

A: Array of 50 elements
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(4) Communication 
 Do we need inter-task communication?

 Inter-task Communication Considerations:

1. Costs
2. Visibility
3. Synchronous vs. Asynchronous
4. Scope
5. Efficiency

18
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(4) Communication

 When is task communication needed?

 Embarrassingly parallel problems
Problem is simple that it can be partitioned into tasks with no need 
for the tasks to share any data.
 Loosely coupled

 Complex problems
Problem is complex, it can be partitioned into tasks, but tasks need 
to share data with each other to complete the computations.
 Tightly coupled
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(4) Communication: Considerations

 Time Cost:
– Time waiting to synchronize
– Bandwidth saturation
– Bandwidth VS Latency

 Resources Costs:
– Machine cycles and resources

 Both (Time & Resources Cost):
– Overhead & Complexity

 Inter-task Communication Considerations:

1.Costs:
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(4) Communication: Considerations

 Time Cost

 Time waiting to synchronize

Communications synchronization between tasks. Tasks 
spend some of their time waiting for others instead of working.

 Bandwidth saturation

Competing communication traffic fill the network bandwidth.

 Bandwidth VS Latency

 Latency is the time it takes to send a minimum size message. 

 Bandwidth is the amount of data that can be transferred per time unit.

 Small messages experience both delays. It’s better to package multiple 
small messages in one big message. 

1) Costs

http://theragblog.blogspot.
com/2009/04/
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(4) Communication: Considerations

 Resources Cost

 Machine cycles and resources

Machine cycles and resources used to package and 
transmit data. They are supposed to be used for 
computation.

 Time and Resources Cost

 Overhead & Complexity

Inter-task communication involve overhead in terms of time spent and 
resource consumed. 

1) Costs

http://www.mewan.net/curriculum/pshe/
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(4) Communication: Considerations

 Task communication is more visible in 
some models (ex: Message Passing 
Model), and is under the programmer’s 
control.

 In other models (ex: Data Parallel Model), 
communication is often done 
transparently with no control of the 
programmer.

2) Visibility

Source: http://www.tqnyc.org/2009/00767/Weather%20vocabulary.html
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(4) Communication: Considerations

 Require some type of "handshaking" 
between tasks that are sharing data. 
This could be done implicitly or 
explicitly.

 Blocking communications:
Some work must be held until the 
communications are done.

3) Synchronous vs. asynchronous 
communications 

 Allow tasks to communicate data 
independently from the work they are 
doing. 

 Non-blocking communications. 

 Advantage: Interleaving computation 
with communication.

Asynchronous communications Synchronous communications 
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(4) Communication: Considerations

 Communication Scope:
Which tasks needs to communicate 
with each other. 

 Point-to-point : two tasks are 
communicating, one acts as the 
sender/producer of data, the other acts as 
the receiver/consumer. 

 Collective: Data is communicated between 
more than two tasks. They are members in 
a common group, or collective. 

4) Scope

http://en.wikipedia.org/wiki/File:4x_rifle_scope.jpg

http://upload.wikimedia.org/wikipedia/en/3/35/4x_rifle_scope.jpg�
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(4) Communication: Considerations

 Efficiency varies based on the applications requirements and 
the programmer’s decisions. Programmer must decide:

 Which factors should have more impact on task communication.
 Which implementation to use for the chosen model.
 What type of communication needs to be used.
 Network(s) type and number.

5) Efficiency 
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(5) Synchronization (1/4)

 Process Synchronization:
Reaching an agreement between simultaneous 
processes/tasks regarding a sequence of in-order steps to 
complete an action 

 Barriers
 Locks/ Semaphores
 Synchronous Communication Operations

27
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(5) Synchronization (2/4)

28

 Barriers
 A point at which a task must stop, and can not proceed until all tasks are synchronized.
 Mostly, all tasks are involved. 
 Each task keeps performing its work until reaching a barrier point. Then, it stops and 

keeps waiting for the last task to reach the barrier.
 When last task reaches 

the barrier, all tasks are synchronized. 
 From this point, tasks continue their work.

Task A

Task B

Task C

Tasks

Task D

Time Barrier Task 
continuation 
point

Tasks 
reaching 
the barrier 
at different 
times
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(5) Synchronization (3/4)

29

 Locks/ Semaphores

 Any number of tasks can be involved
 Used to protect access to global data or a 

section of code. Only one task at a time 
may access the lock/semaphore. 
 The first task accesses the lock sets it to 

be locked and releases it when it’s done 
with it. 
 When other tasks try to access the lock 

they fail until the task that owns the lock 
releases it. 

Shred

Memory
a

b

c

d

x
y

z

x = a + b

y = c + d

z = x + y

l = b - a

m = 2 + d

x = a * 2

f = 5

z = x - f

l
m

f

CPU

CPU

CPU

X is blocked by process A.

Process B can not access it 
until process A unblocks it!

Process A

Process B Process C
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 Involves only tasks executing a communication operation 
 Coordination is required between the task that is performing an operation and the other 

tasks performing the communication 
 Require some type of "handshaking" between tasks that are sharing data. This could be 

done implicitly or explicitly.
 Blocking communications:

Some work must be held until the communications are done.

(5) Synchronization (4/4)

30

 Synchronous communication operations 

Task A Task B

Communication

…

Task A Task B

Communication

…

Three- Way 
Handshake

Two Way 
Handshake
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(6) Data Dependencies

 The order of program statement 
execution effects the results of the 
program.

 Multiple use of data stored in the 
same location by multiple tasks.

 Dependencies make one of the 
primary inhibitors to parallelism. 

31
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(6) Data Dependencies

 Handling Data Dependencies: 

 Distributed memory architectures:

Required data can be transferred at synchronization points. 

 Shared memory architectures:

Operations of reading from/writing to the memory can be 
synchronized among tasks.

32
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(7) Load Balancing
 How to distribute work among all tasks so they are all kept busy all of the 

time?

 When barrier synchronization is used, the slowest task determines the 
performance.

33

Time

Function 1

Total Time 

Task
Serial 

Function 2

Function 3

Function 4

Function 1

Function 2

Function 3

Function 4

Total Time 

T1

T2

T3

T4

TimeTask
Load Balancing Using Parallelism 
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(7) Load Balancing

 Ways to achieve Load Balancing

 Equally partitioning the work each task receives.

 For operations that perform similar tasks to all data elements 
(ex: array, matrix, loop, …).

 Dynamic work assignment:

 Using a scheduler/task-pool.

 Developing an algorithm that detects and handles imbalances.

34
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 Fine-grain Parallelism: 
 Small amounts of computation events are done between communication

events. 
 Make load balancing easier. 
 High communication overhead. 
 Small opportunity to enhance performance.
 If its too fine, communication overhead takes much longer than                computations.

(8) Granularity
 Computation : Communication ratio

35

 Coarse-grain Parallelism: 
 Large amounts of computational events are done between communication

events. 
 Large opportunity to enhance performance.
 Harder to do load balancing efficiently .

 Which is better?
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Lecture Outline

 Parallel Computing Design Considerations
 Limits and Costs of Parallel Computing
 Parallel Computing Performance Analysis
 Examples of Problems Solved By Parallel Computing
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Limits and costs of Parallel Computing (1/5)

 Complexity
 Scalability
 Portability
 Resource Requirements

37
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Limits and costs of Parallel Computing (2/5)
 Complexity

 Parallel programs are much more complex 
than corresponding serial ones because they 
have several tasks running at the same time 
and data flowing between them. 

 Costs of complexity are measured in all 
aspects of software development: Design, 
Coding, Debugging, Tuning, Maintenance.

38

 When designing parallel programs, a programmer should stick 
to good software development practices to keep the program 
complexity to minimum.

Source: http://www.jamb.ca
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 Scalability

 What makes parallel programs scale?
 Adding more processors?
 Other factors

 Software factors
– Most of algorithms have limits to scalability. They reach a point 

where adding more resources causes performance to decrease.
– Supporting subsystems and libraries can limit scalability.

 Hardware factors
– Memory-CPU bus bandwidth on an SMP machine. 
– Communications network bandwidth. 
– Amount of memory on machine(s).
– Processor clock speed. 

Limits and costs of Parallel Computing (3/5)

Source: http://www.gensight.com/
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 Portability
 Due to standardization, portability issues in 

parallel programs are not very serious as they 
used to be.

Limits and costs of Parallel Computing (4/5)

 However…

 All of the usual portability issues in serial programs apply to parallel ones. 

 Even in with standardized APIs, implementation differences that required 
code modifications exist.

 Operating systems causes many portability issues. 

 Hardware architectures are highly variable which affect portability. 

Source: http://www.stockphotopro.com/
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 Resource Requirements
 Parallel computing is used to decrease execution time, but to reach this, more CPU 

time is required. 
 EX: a parallel code that takes1 hour using 8 CPUs, would take 8 hours of CPU 

time when done serially. 

Memory required for parallel code is much more than corresponding serial code.
 Data replication.
 Overheads caused by using support libraries and subsystems. 
 Communication overhead

Limits and costs of Parallel Computing (5/5)

 Short running parallel programs, performance can 
be decreased. 

 Overhead caused by setting up parallel 
environment, create tasks, communication, 
execution time, …

http://www.verseone.com/image/servers.jpg
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Lecture Outline

 Parallel Computing Design Considerations
 Limits and Costs of Parallel Computing
 Parallel Computing Performance Analysis
 Examples of Problems Solved By Parallel Computing
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Parallel Computing Performance Analysis

 Amdahl’s Law: helps decide whether a program merits penalization.

 Gustafson’s Law: a way to evaluate the performance of a parallel 
program.

 Karp-Flatt Metric: helps deciding whether the principle barrier to the 
program speedup is the amount of inherently sequential code or 
parallel overhead.

 The Isoefficieny Metric: a way to evaluate the scalability of a parallel 
algorithm executing on a parallel computer. 

Many ways are used to measure the performance of parallel computing 
programs, such as:
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Amdahl’s Law

 Used to find the maximum expected improvement in an 
entire application when only one part of it is improved. 

 An application could be bounded by one of the following 
main factors: 

 Computation Time
 Memory Access Time
 Disk Access Time
 Network Access Time
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Amdahl’s Law: Example
Consider an application that spends 70% of its time on computation, 10% 
accessing memory, 10% accessing disk, and 10% accessing network. 

 What is the bounding factor to this application?

 What is the expected improvement percentage in its performance if:

 The memory access speed is doubled?

 The computational speed is doubled?

70%10% 10% 10%

Computation
Memory 
Access

Disk 
Access

Network 
Access

Time

Type of 
work
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Amdahl’s Law: Example
Consider an application that spends 70% of its time on computation, 10% 
accessing memory, 10% accessing disk, and 10% accessing network. 

 What is the bounding factor to this application?  Computation

 What is the expected improvement percentage in its performance if:

 The memory access speed is doubled?   5%

 The computational speed is doubled?    35%

70%10% 10% 10%

Computation
Memory 
Access

Disk 
Access

Network 
Access

Time

Type of 
work
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Using Amdahl’s Law in Analyzing Performance 
of Parallel Computing 

 Amdahl's Law is used to predict the 
maximum improvement in the speedup 
when using multiple processors in 
parallel.

 Speedup: how much a parallel program 
is faster than the corresponding serial 
one.

47

 If P =0 (none of the code is parallelized) speedup = 1 (no speedup). 
 If P = 1 (code is parallelized), speedup = ∞ (theoretically). 
 If 1/2 of the code is parallelized, speedup = 2 (meaning the code will run twice as 

fast).

https://computing.llnl.gov/tutorials/parallel_comp/
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Using Amdahl’s Law in Analyzing Performance 
of Parallel Computing

 When using multiple processors in 
parallel, program’s speedup is limited 
by the time required by the sequential 
part of the program.

48

 Scalability Limitation:
Problems in which parallel fraction increases as the problem size increases are more 
scalable than those with fixed parallel fraction. 

https://computing.llnl.gov/tutorials/parallel_comp/

 P = parallel fraction
N = number of processors
S = serial fraction 
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Using Amdahl’s in Parallel Computing: Example

Consider the an application that has 4 different functions: F1: taking 5% of the 
running time, F2: 10%, F3: 80%, and F4: 5%. 

 Parallelizing which part of the application would mostly improve the performance?

 Assume that parts: F1, F3, and 4 can all be parallelized, but F2 must be done serially. 
What is the best performance speed up that could be reached by parallelizing those 
parts? 

80%4% 10% 6%

F2F1 F3 F4Function

Time 
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Using Amdahl’s in Parallel Computing: Example

Consider the an application that has 4 different functions: F1: taking 5% of the 
running time, F2: 10%, F3: 80%, and F4: 5%. 

 Parallelizing which part of the application would mostly improve the performance?    
F3

 Assume that parts: F1, F3, and 4 can all be parallelized, but F2 must be done serially. 
What is the best performance speed up that could be reached by parallelizing those 
part?  10 times faster

80%4% 10% 6%

F2F1 F3 F4Function

Time 
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Using Amdahl’s in Parallel Computing: Example

 Suppose that running the whole application requires 50 ms. From the last question, 
what is the best running time that we can reach?

 Can the application run any faster than this? Why? 

2 ms 5 ms 40 ms 3 ms 
80%4% 10% 6%

F2F1 F3 F4Function

Time 
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Using Amdahl’s in Parallel Computing: Example

 Suppose that running the whole application requires 50 ms. From the last question, 
what is the best running time that we can reach?

Max speedup is 10, best running time is 5 ms

 Can the application run any faster than this? Why? 
No, because no matter how the parallel part is fast (fastest is t=0), we can not 

decrease the time required to run the serial part (5 seconds).

2 ms 5 ms 40 ms 3 ms 
80%4% 10% 6%

F2F1 F3 F4Function

Time 
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Lecture Outline

 Parallel Computing Design Considerations
 Limits and Costs of Parallel Computing
 Parallel Computing Performance Analysis
 Examples of Problems Solved By Parallel Computing
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Parallelization Examples

 Array Processing
 Apply an operation or function on each element of the array.

 PI Calculation
 Discussed previously in the Demo!

 Can you think of more examples?

54
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Parallelization Examples

 Array Processing
 Apply the same operation or function on each element of the array.
 Independent, no communication is needed. 
 Embarrassingly parallel! 
 Divide the array into smaller chunks and distribute them over 

processors so the operations can be done in parallel. 

55
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Example: Array Processing

 Serial Code:

do j = 1,n 
do i = 1,n 

a(i,j) = fcn(i,j) 
end do 

end do

But, this is computationally intensive!
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Example: Array Processing

find out if I am MASTER or WORKER 

if I am MASTER 
initialize the array 
send each WORKER info on part of array it owns 
send each WORKER its portion of initial array 
receive from each WORKER results 

else if I am WORKER 
receive from MASTER info on part of array I own
receive from MASTER my portion of initial array 

// calculate my portion of array 
do j = my first column,my last column

do i = 1,n a(i,j) = fcn(i,j)
end do

end do
send MASTER results 

endif

Array is divided into chunks, 
each processor own a chunk, 
and execute the portion of the 
loop corresponding to it.

 Parallel Code:
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Parallelization Examples: Simple Heat Equation 

 The Heat Equation describes the change in 
temperature in a given region over time, given 
the initial temperature distribution and the 
boundary conditions. 

 To solve the equation on a 2D region, a finite 
differencing scheme is used. 2D array is used 
to represent the temperature distribution. So, 
the initial array is used to calculate the array 
representing the change in the distribution. 

 The initial temperature is zero on the boundaries and high in the middle. Boundary 
temperature is held at zero. 

 Calculating an element depends on neighbor element values. So, communication is 
required!
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Parallelization Examples: Simple Heat Equation

do iy = 2, ny - 1 

do ix = 2, nx - 1 

u2(ix, iy) = u1(ix, iy) 
+ cx * (u1(ix+1,iy) + u1(ix-1,iy) - 2.*u1(ix,iy)) 
+ cy * (u1(ix,iy+1) + u1(ix,iy-1) - 2.*u1(ix,iy)) 

end do 

end do

 Serial Code:

 To calculate one element Ux,y:
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Parallelization Examples: Simple Heat Equation
 Parallel Way:

 The array in divided into chunks, each is done 
through a task. 

 Data dependencies are determined because 
we have 2 types of elements:
 interior elements belonging to a task are 

independent of other tasks. 
 border elements are dependent on the 

neighbor elements, so communication is 
required. 

 Master process sends initial info to worker processes, checks whether convergence 
is reached, and collects results.

 Worker process calculates solutions and communicate as neighbor processes when 
it’s required. 

https://computing.llnl.gov/tutorials/parallel_comp/images/heat_interior.gif�
https://computing.llnl.gov/tutorials/parallel_comp/images/heat_edge.gif�
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Parallelization Examples: Simple Heat Equation
 Parallel Code:

find out if I am MASTER or WORKER

if I am MASTER 
initialize array 
send each WORKER starting info and subarray 

do until all WORKERS converge 
gather from all WORKERS convergence data 
broadcast to all WORKERS convergence signal 

end do 

receive results from each WORKER 

else if I am WORKER 
receive from MASTER starting info and subarray

do until solution converged 
update time 
send neighbors my border info 
receive from neighbors their border info 
update my portion of solution array
determine if my solution has converged 

send MASTER convergence data 
receive from MASTER convergence signal 

end do 

send MASTER results 
endif 
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