
Carnegie Mellon

Spring 2010 ©15-319 Introduction to Cloud Computing

Introduction to Cloud Computing

Majd F. Sakr

Parallel Processing III
15-319, spring 2010
10th Lecture, Feb 11th

Carnegie Mellon

Spring 2010 ©15-319 Introduction to Cloud Computing

Review

 Architectures
 Interconnect

http://www.phys.uu.nl/~steen/web03/sm-mimd.html

Carnegie Mellon

Spring 2010 ©15-319 Introduction to Cloud Computing

Review

 Shared Memory MIMD

http://www.phys.uu.nl/~steen/web03/sm-mimd.html

Carnegie Mellon

Spring 2010 ©15-319 Introduction to Cloud Computing

Review

 Distributed
Memory MIMD

http://www.phys.uu.nl/~steen/web03/dm-mimd.html

Carnegie Mellon

Spring 2010 ©15-319 Introduction to Cloud Computing

Review

 Hybrids
 Cache-coherent NUMA

http://www.phys.uu.nl/~steen/web03/ccNUMA.html

Carnegie Mellon

Spring 2010 ©15-319 Introduction to Cloud Computing

High BW & Speed Networks

 Server and cluster backbones typically need fast
interconnects

 Gigabit Ethernet
 10 Gigabit
 100 Gigabit

 Myrinet
 Infiniband © Barcelona Supercomputing Center

Carnegie Mellon

Spring 2010 ©15-319 Introduction to Cloud Computing

Gigabit Ethernet

 Known as “IEEE Standard 802.3z”
 Offers 1 Gbps raw bandwidth
 Speed: (10 x speed of fast Ethernet)

(100 x speed of regular Ethernet)
 1 Gig Ethernet uses UTP cables
 10 Gig Ethernet and 100 Gig Ethernet are emerging

technologies, typically require fiber optical cables

commons.wikimedia.org/wiki/File:UTP_cable.jpg
http://www.directindustry.com/prod/lapp-group/fiber-optic-cable-17287-404578.html

UTP
Fiber

optical
cables

Carnegie Mellon

Spring 2010 ©15-319 Introduction to Cloud Computing

Myrinet
 High-speed Local Area Network Interconnect
 Typically requires two fiber optic cables per node

(upstream and downstream)
 Offers low-latency networking with low protocol

overhead @ 1.9 Gbps (messages in usec range)
 Next Generation (Myri-10G) is 10 Gbps.

Carnegie Mellon

Spring 2010 ©15-319 Introduction to Cloud Computing

Infiniband
 High-bandwidth interconnect primarily for processors to high

performance I/O devices
 InfiniBand offers point-to-point bidirectional serial links which

forms a switched fabric
 Upto 120 Gbps theoretical bandwidth (message in usec range)

Carnegie Mellon

Spring 2010 ©15-319 Introduction to Cloud Computing

Lecture Outline

 Parallel Computing Design Considerations
 Limits and Costs of Parallel Computing
 Parallel Computing Performance Analysis
 Examples of Problems Solved By Parallel Computing

Carnegie Mellon

Spring 2010 ©15-319 Introduction to Cloud Computing

How to Parallelize
 Automatic vs. Manual Parallelization

 Design Considerations

1. Can the Problem be parallelized?
2. Program’s hotspots & bottlenecks?
3. Partitioning
4. Communications
5. Synchronization
6. Data Dependencies
7. Load Balancing
8. Granularity
9. Input/Output

11

Carnegie Mellon

Spring 2010 ©15-319 Introduction to Cloud Computing

Automatic VS Manual Parallelism

 Mostly, developing parallel programs has been manual. This is
complex, time consuming, and error-prone process.

 Parallelizing compiler or pre-processor is used to parallelize
serial code. This complier usually works in two different ways:

 Fully Automatic:

The compiler analyzes the source code and specifies parts that could be
parallelized.

 Programmer Directed:

The programmer uses compiler flags to explicitly tell the compiler how to
parallelize the code.

Carnegie Mellon

Spring 2010 ©15-319 Introduction to Cloud Computing

(1) Can the Problem be Parallelized?

 Parallelism Inhibitors:
 Control vs. data dependencies

 Examples:
 Parallelizable Problem: Multiply each element

of the array by 2
 Non-parallelizable Problem: Fibonacci sequence

 Handling Data Dependencies

 Parallelism Slow-down:
 Communications bottleneck

13

Carnegie Mellon

Spring 2010 ©15-319 Introduction to Cloud Computing

(2) Hotspots & Bottlenecks

 Hotspots:
 What are they? Account for most of CPU usage
 How to define them in the program? Profiling & Performance

Analysis
 Parallelism focus should be on these spots

 Bottlenecks:
 What are they? slow areas
 Can we redesign the algorithm to reduce /eliminate bottlenecks?

14

Source: http://scavenging.wordpress.com/2009/05/

Source: http://zubinmehta.files.wordpress.com/

Carnegie Mellon

Spring 2010 ©15-319 Introduction to Cloud Computing

(3) Partitioning/Decomposition

 Dividing the problem into chunks/parts of work that can
be distributed to multiple tasks.

 Best Partitioning happens where there is minimum I/O &
communication

 Ways to Partition?

 Domain Decomposition
 Functional Decomposition

15
http://tinypic.com/view.php?pic=a29ah0&s=3

Carnegie Mellon

Spring 2010 ©15-319 Introduction to Cloud Computing

(3) Partitioning/Decomposition

 Functional
Decomposition

 The focus is on the
computation to be
performed, not on the data
given to the problem.

 The problem is partitioned
best on the work that must
be done. Each task
computes a part of the
overall work.

F1 F3
F2

Loop

Matrix Mult F4

F5

LoopProblem
Intersection

Set

F1

F4

Task 1

F5

Loop

Task 2

F2

Task 3

F3

Task 4

Matrix Mult

Loop

Task 5

Carnegie Mellon

Spring 2010 ©15-319 Introduction to Cloud Computing

(3) Partitioning/Decomposition

 Domain Decomposition

 The data given to the problem is divided into chunks.

 Each chunk is given to a task that performs the operation on it.
Tasks run in parallel.

Problem
Data Set

A0 … A9 A10 … A19 A20 … A29 A30 … A39 A40 … A49

A0 … A9 A10 … A19

Task 2Task 1 Task 5Task 4Task 3

A20 … A29 A30 … A39 A40 … A49

A: Array of 50 elements

Carnegie Mellon

Spring 2010 ©15-319 Introduction to Cloud Computing

(4) Communication
 Do we need inter-task communication?

 Inter-task Communication Considerations:

1. Costs
2. Visibility
3. Synchronous vs. Asynchronous
4. Scope
5. Efficiency

18

Carnegie Mellon

Spring 2010 ©15-319 Introduction to Cloud Computing

(4) Communication

 When is task communication needed?

 Embarrassingly parallel problems
Problem is simple that it can be partitioned into tasks with no need
for the tasks to share any data.
 Loosely coupled

 Complex problems
Problem is complex, it can be partitioned into tasks, but tasks need
to share data with each other to complete the computations.
 Tightly coupled

Carnegie Mellon

Spring 2010 ©15-319 Introduction to Cloud Computing

(4) Communication: Considerations

 Time Cost:
– Time waiting to synchronize
– Bandwidth saturation
– Bandwidth VS Latency

 Resources Costs:
– Machine cycles and resources

 Both (Time & Resources Cost):
– Overhead & Complexity

 Inter-task Communication Considerations:

1.Costs:

Carnegie Mellon

Spring 2010 ©15-319 Introduction to Cloud Computing

(4) Communication: Considerations

 Time Cost

 Time waiting to synchronize

Communications synchronization between tasks. Tasks
spend some of their time waiting for others instead of working.

 Bandwidth saturation

Competing communication traffic fill the network bandwidth.

 Bandwidth VS Latency

 Latency is the time it takes to send a minimum size message.

 Bandwidth is the amount of data that can be transferred per time unit.

 Small messages experience both delays. It’s better to package multiple
small messages in one big message.

1) Costs

http://theragblog.blogspot.
com/2009/04/

Carnegie Mellon

Spring 2010 ©15-319 Introduction to Cloud Computing

(4) Communication: Considerations

 Resources Cost

 Machine cycles and resources

Machine cycles and resources used to package and
transmit data. They are supposed to be used for
computation.

 Time and Resources Cost

 Overhead & Complexity

Inter-task communication involve overhead in terms of time spent and
resource consumed.

1) Costs

http://www.mewan.net/curriculum/pshe/

Carnegie Mellon

Spring 2010 ©15-319 Introduction to Cloud Computing

(4) Communication: Considerations

 Task communication is more visible in
some models (ex: Message Passing
Model), and is under the programmer’s
control.

 In other models (ex: Data Parallel Model),
communication is often done
transparently with no control of the
programmer.

2) Visibility

Source: http://www.tqnyc.org/2009/00767/Weather%20vocabulary.html

Carnegie Mellon

Spring 2010 ©15-319 Introduction to Cloud Computing

(4) Communication: Considerations

 Require some type of "handshaking"
between tasks that are sharing data.
This could be done implicitly or
explicitly.

 Blocking communications:
Some work must be held until the
communications are done.

3) Synchronous vs. asynchronous
communications

 Allow tasks to communicate data
independently from the work they are
doing.

 Non-blocking communications.

 Advantage: Interleaving computation
with communication.

Asynchronous communications Synchronous communications

Carnegie Mellon

Spring 2010 ©15-319 Introduction to Cloud Computing

(4) Communication: Considerations

 Communication Scope:
Which tasks needs to communicate
with each other.

 Point-to-point : two tasks are
communicating, one acts as the
sender/producer of data, the other acts as
the receiver/consumer.

 Collective: Data is communicated between
more than two tasks. They are members in
a common group, or collective.

4) Scope

http://en.wikipedia.org/wiki/File:4x_rifle_scope.jpg

http://upload.wikimedia.org/wikipedia/en/3/35/4x_rifle_scope.jpg�

Carnegie Mellon

Spring 2010 ©15-319 Introduction to Cloud Computing

(4) Communication: Considerations

 Efficiency varies based on the applications requirements and
the programmer’s decisions. Programmer must decide:

 Which factors should have more impact on task communication.
 Which implementation to use for the chosen model.
 What type of communication needs to be used.
 Network(s) type and number.

5) Efficiency

Carnegie Mellon

Spring 2010 ©15-319 Introduction to Cloud Computing

(5) Synchronization (1/4)

 Process Synchronization:
Reaching an agreement between simultaneous
processes/tasks regarding a sequence of in-order steps to
complete an action

 Barriers
 Locks/ Semaphores
 Synchronous Communication Operations

27

Carnegie Mellon

Spring 2010 ©15-319 Introduction to Cloud Computing

(5) Synchronization (2/4)

28

 Barriers
 A point at which a task must stop, and can not proceed until all tasks are synchronized.
 Mostly, all tasks are involved.
 Each task keeps performing its work until reaching a barrier point. Then, it stops and

keeps waiting for the last task to reach the barrier.
 When last task reaches

the barrier, all tasks are synchronized.
 From this point, tasks continue their work.

Task A

Task B

Task C

Tasks

Task D

Time Barrier Task
continuation
point

Tasks
reaching
the barrier
at different
times

Carnegie Mellon

Spring 2010 ©15-319 Introduction to Cloud Computing

(5) Synchronization (3/4)

29

 Locks/ Semaphores

 Any number of tasks can be involved
 Used to protect access to global data or a

section of code. Only one task at a time
may access the lock/semaphore.
 The first task accesses the lock sets it to

be locked and releases it when it’s done
with it.
 When other tasks try to access the lock

they fail until the task that owns the lock
releases it.

Shred

Memory
a

b

c

d

x
y

z

x = a + b

y = c + d

z = x + y

l = b - a

m = 2 + d

x = a * 2

f = 5

z = x - f

l
m

f

CPU

CPU

CPU

X is blocked by process A.

Process B can not access it
until process A unblocks it!

Process A

Process B Process C

Carnegie Mellon

Spring 2010 ©15-319 Introduction to Cloud Computing

 Involves only tasks executing a communication operation
 Coordination is required between the task that is performing an operation and the other

tasks performing the communication
 Require some type of "handshaking" between tasks that are sharing data. This could be

done implicitly or explicitly.
 Blocking communications:

Some work must be held until the communications are done.

(5) Synchronization (4/4)

30

 Synchronous communication operations

Task A Task B

Communication

…

Task A Task B

Communication

…

Three- Way
Handshake

Two Way
Handshake

Carnegie Mellon

Spring 2010 ©15-319 Introduction to Cloud Computing

(6) Data Dependencies

 The order of program statement
execution effects the results of the
program.

 Multiple use of data stored in the
same location by multiple tasks.

 Dependencies make one of the
primary inhibitors to parallelism.

31

B = 3

C = B

A = C + 1

B = 7

B = 3

C = B

A = C + 1

B = 7

Shred

Memorya

b

c

d

x

y
z

CU

RF PC
IR

x = a + b

y = c + d

z = x + y

l = b - a

m = 2 + d

l

m

f

CU

RF PC
IR

Carnegie Mellon

Spring 2010 ©15-319 Introduction to Cloud Computing

(6) Data Dependencies

 Handling Data Dependencies:

 Distributed memory architectures:

Required data can be transferred at synchronization points.

 Shared memory architectures:

Operations of reading from/writing to the memory can be
synchronized among tasks.

32

Carnegie Mellon

Spring 2010 ©15-319 Introduction to Cloud Computing

(7) Load Balancing
 How to distribute work among all tasks so they are all kept busy all of the

time?

 When barrier synchronization is used, the slowest task determines the
performance.

33

Time

Function 1

Total Time

Task
Serial

Function 2

Function 3

Function 4

Function 1

Function 2

Function 3

Function 4

Total Time

T1

T2

T3

T4

TimeTask
Load Balancing Using Parallelism

Carnegie Mellon

Spring 2010 ©15-319 Introduction to Cloud Computing

(7) Load Balancing

 Ways to achieve Load Balancing

 Equally partitioning the work each task receives.

 For operations that perform similar tasks to all data elements
(ex: array, matrix, loop, …).

 Dynamic work assignment:

 Using a scheduler/task-pool.

 Developing an algorithm that detects and handles imbalances.

34

Carnegie Mellon

Spring 2010 ©15-319 Introduction to Cloud Computing

 Fine-grain Parallelism:
 Small amounts of computation events are done between communication

events.
 Make load balancing easier.
 High communication overhead.
 Small opportunity to enhance performance.
 If its too fine, communication overhead takes much longer than computations.

(8) Granularity
 Computation : Communication ratio

35

 Coarse-grain Parallelism:
 Large amounts of computational events are done between communication

events.
 Large opportunity to enhance performance.
 Harder to do load balancing efficiently .

 Which is better?

Carnegie Mellon

Spring 2010 ©15-319 Introduction to Cloud Computing

Lecture Outline

 Parallel Computing Design Considerations
 Limits and Costs of Parallel Computing
 Parallel Computing Performance Analysis
 Examples of Problems Solved By Parallel Computing

Carnegie Mellon

Spring 2010 ©15-319 Introduction to Cloud Computing

Limits and costs of Parallel Computing (1/5)

 Complexity
 Scalability
 Portability
 Resource Requirements

37

Carnegie Mellon

Spring 2010 ©15-319 Introduction to Cloud Computing

Limits and costs of Parallel Computing (2/5)
 Complexity

 Parallel programs are much more complex
than corresponding serial ones because they
have several tasks running at the same time
and data flowing between them.

 Costs of complexity are measured in all
aspects of software development: Design,
Coding, Debugging, Tuning, Maintenance.

38

 When designing parallel programs, a programmer should stick
to good software development practices to keep the program
complexity to minimum.

Source: http://www.jamb.ca

Carnegie Mellon

Spring 2010 ©15-319 Introduction to Cloud Computing

 Scalability

 What makes parallel programs scale?
 Adding more processors?
 Other factors

 Software factors
– Most of algorithms have limits to scalability. They reach a point

where adding more resources causes performance to decrease.
– Supporting subsystems and libraries can limit scalability.

 Hardware factors
– Memory-CPU bus bandwidth on an SMP machine.
– Communications network bandwidth.
– Amount of memory on machine(s).
– Processor clock speed.

Limits and costs of Parallel Computing (3/5)

Source: http://www.gensight.com/

Carnegie Mellon

Spring 2010 ©15-319 Introduction to Cloud Computing

 Portability
 Due to standardization, portability issues in

parallel programs are not very serious as they
used to be.

Limits and costs of Parallel Computing (4/5)

 However…

 All of the usual portability issues in serial programs apply to parallel ones.

 Even in with standardized APIs, implementation differences that required
code modifications exist.

 Operating systems causes many portability issues.

 Hardware architectures are highly variable which affect portability.

Source: http://www.stockphotopro.com/

Carnegie Mellon

Spring 2010 ©15-319 Introduction to Cloud Computing

 Resource Requirements
 Parallel computing is used to decrease execution time, but to reach this, more CPU

time is required.
 EX: a parallel code that takes1 hour using 8 CPUs, would take 8 hours of CPU

time when done serially.

Memory required for parallel code is much more than corresponding serial code.
 Data replication.
 Overheads caused by using support libraries and subsystems.
 Communication overhead

Limits and costs of Parallel Computing (5/5)

 Short running parallel programs, performance can
be decreased.

 Overhead caused by setting up parallel
environment, create tasks, communication,
execution time, …

http://www.verseone.com/image/servers.jpg

Carnegie Mellon

Spring 2010 ©15-319 Introduction to Cloud Computing

Lecture Outline

 Parallel Computing Design Considerations
 Limits and Costs of Parallel Computing
 Parallel Computing Performance Analysis
 Examples of Problems Solved By Parallel Computing

Carnegie Mellon

Spring 2010 ©15-319 Introduction to Cloud Computing

Parallel Computing Performance Analysis

 Amdahl’s Law: helps decide whether a program merits penalization.

 Gustafson’s Law: a way to evaluate the performance of a parallel
program.

 Karp-Flatt Metric: helps deciding whether the principle barrier to the
program speedup is the amount of inherently sequential code or
parallel overhead.

 The Isoefficieny Metric: a way to evaluate the scalability of a parallel
algorithm executing on a parallel computer.

Many ways are used to measure the performance of parallel computing
programs, such as:

Carnegie Mellon

Spring 2010 ©15-319 Introduction to Cloud Computing

Amdahl’s Law

 Used to find the maximum expected improvement in an
entire application when only one part of it is improved.

 An application could be bounded by one of the following
main factors:

 Computation Time
 Memory Access Time
 Disk Access Time
 Network Access Time

Carnegie Mellon

Spring 2010 ©15-319 Introduction to Cloud Computing

Amdahl’s Law: Example
Consider an application that spends 70% of its time on computation, 10%
accessing memory, 10% accessing disk, and 10% accessing network.

 What is the bounding factor to this application?

 What is the expected improvement percentage in its performance if:

 The memory access speed is doubled?

 The computational speed is doubled?

70%10% 10% 10%

Computation
Memory
Access

Disk
Access

Network
Access

Time

Type of
work

Carnegie Mellon

Spring 2010 ©15-319 Introduction to Cloud Computing

Amdahl’s Law: Example
Consider an application that spends 70% of its time on computation, 10%
accessing memory, 10% accessing disk, and 10% accessing network.

 What is the bounding factor to this application? Computation

 What is the expected improvement percentage in its performance if:

 The memory access speed is doubled? 5%

 The computational speed is doubled? 35%

70%10% 10% 10%

Computation
Memory
Access

Disk
Access

Network
Access

Time

Type of
work

Carnegie Mellon

Spring 2010 ©15-319 Introduction to Cloud Computing

Using Amdahl’s Law in Analyzing Performance
of Parallel Computing

 Amdahl's Law is used to predict the
maximum improvement in the speedup
when using multiple processors in
parallel.

 Speedup: how much a parallel program
is faster than the corresponding serial
one.

47

 If P =0 (none of the code is parallelized) speedup = 1 (no speedup).
 If P = 1 (code is parallelized), speedup = ∞ (theoretically).
 If 1/2 of the code is parallelized, speedup = 2 (meaning the code will run twice as

fast).

https://computing.llnl.gov/tutorials/parallel_comp/

Carnegie Mellon

Spring 2010 ©15-319 Introduction to Cloud Computing

Using Amdahl’s Law in Analyzing Performance
of Parallel Computing

 When using multiple processors in
parallel, program’s speedup is limited
by the time required by the sequential
part of the program.

48

 Scalability Limitation:
Problems in which parallel fraction increases as the problem size increases are more
scalable than those with fixed parallel fraction.

https://computing.llnl.gov/tutorials/parallel_comp/

 P = parallel fraction
N = number of processors
S = serial fraction

Carnegie Mellon

Spring 2010 ©15-319 Introduction to Cloud Computing

Using Amdahl’s in Parallel Computing: Example

Consider the an application that has 4 different functions: F1: taking 5% of the
running time, F2: 10%, F3: 80%, and F4: 5%.

 Parallelizing which part of the application would mostly improve the performance?

 Assume that parts: F1, F3, and 4 can all be parallelized, but F2 must be done serially.
What is the best performance speed up that could be reached by parallelizing those
parts?

80%4% 10% 6%

F2F1 F3 F4Function

Time

Carnegie Mellon

Spring 2010 ©15-319 Introduction to Cloud Computing

Using Amdahl’s in Parallel Computing: Example

Consider the an application that has 4 different functions: F1: taking 5% of the
running time, F2: 10%, F3: 80%, and F4: 5%.

 Parallelizing which part of the application would mostly improve the performance?
F3

 Assume that parts: F1, F3, and 4 can all be parallelized, but F2 must be done serially.
What is the best performance speed up that could be reached by parallelizing those
part? 10 times faster

80%4% 10% 6%

F2F1 F3 F4Function

Time

Carnegie Mellon

Spring 2010 ©15-319 Introduction to Cloud Computing

Using Amdahl’s in Parallel Computing: Example

 Suppose that running the whole application requires 50 ms. From the last question,
what is the best running time that we can reach?

 Can the application run any faster than this? Why?

2 ms 5 ms 40 ms 3 ms
80%4% 10% 6%

F2F1 F3 F4Function

Time

Carnegie Mellon

Spring 2010 ©15-319 Introduction to Cloud Computing

Using Amdahl’s in Parallel Computing: Example

 Suppose that running the whole application requires 50 ms. From the last question,
what is the best running time that we can reach?

Max speedup is 10, best running time is 5 ms

 Can the application run any faster than this? Why?
No, because no matter how the parallel part is fast (fastest is t=0), we can not

decrease the time required to run the serial part (5 seconds).

2 ms 5 ms 40 ms 3 ms
80%4% 10% 6%

F2F1 F3 F4Function

Time

Carnegie Mellon

Spring 2010 ©15-319 Introduction to Cloud Computing

Lecture Outline

 Parallel Computing Design Considerations
 Limits and Costs of Parallel Computing
 Parallel Computing Performance Analysis
 Examples of Problems Solved By Parallel Computing

Carnegie Mellon

Spring 2010 ©15-319 Introduction to Cloud Computing

Parallelization Examples

 Array Processing
 Apply an operation or function on each element of the array.

 PI Calculation
 Discussed previously in the Demo!

 Can you think of more examples?

54

Carnegie Mellon

Spring 2010 ©15-319 Introduction to Cloud Computing

Parallelization Examples

 Array Processing
 Apply the same operation or function on each element of the array.
 Independent, no communication is needed.
 Embarrassingly parallel!
 Divide the array into smaller chunks and distribute them over

processors so the operations can be done in parallel.

55

Carnegie Mellon

Spring 2010 ©15-319 Introduction to Cloud Computing

Example: Array Processing

 Serial Code:

do j = 1,n
do i = 1,n

a(i,j) = fcn(i,j)
end do

end do

But, this is computationally intensive!

Carnegie Mellon

Spring 2010 ©15-319 Introduction to Cloud Computing

Example: Array Processing

find out if I am MASTER or WORKER

if I am MASTER
initialize the array
send each WORKER info on part of array it owns
send each WORKER its portion of initial array
receive from each WORKER results

else if I am WORKER
receive from MASTER info on part of array I own
receive from MASTER my portion of initial array

// calculate my portion of array
do j = my first column,my last column

do i = 1,n a(i,j) = fcn(i,j)
end do

end do
send MASTER results

endif

Array is divided into chunks,
each processor own a chunk,
and execute the portion of the
loop corresponding to it.

 Parallel Code:

Carnegie Mellon

Spring 2010 ©15-319 Introduction to Cloud Computing

Parallelization Examples: Simple Heat Equation

 The Heat Equation describes the change in
temperature in a given region over time, given
the initial temperature distribution and the
boundary conditions.

 To solve the equation on a 2D region, a finite
differencing scheme is used. 2D array is used
to represent the temperature distribution. So,
the initial array is used to calculate the array
representing the change in the distribution.

 The initial temperature is zero on the boundaries and high in the middle. Boundary
temperature is held at zero.

 Calculating an element depends on neighbor element values. So, communication is
required!

Carnegie Mellon

Spring 2010 ©15-319 Introduction to Cloud Computing

Parallelization Examples: Simple Heat Equation

do iy = 2, ny - 1

do ix = 2, nx - 1

u2(ix, iy) = u1(ix, iy)
+ cx * (u1(ix+1,iy) + u1(ix-1,iy) - 2.*u1(ix,iy))
+ cy * (u1(ix,iy+1) + u1(ix,iy-1) - 2.*u1(ix,iy))

end do

end do

 Serial Code:

 To calculate one element Ux,y:

Carnegie Mellon

Spring 2010 ©15-319 Introduction to Cloud Computing

Parallelization Examples: Simple Heat Equation
 Parallel Way:

 The array in divided into chunks, each is done
through a task.

 Data dependencies are determined because
we have 2 types of elements:
 interior elements belonging to a task are

independent of other tasks.
 border elements are dependent on the

neighbor elements, so communication is
required.

 Master process sends initial info to worker processes, checks whether convergence
is reached, and collects results.

 Worker process calculates solutions and communicate as neighbor processes when
it’s required.

https://computing.llnl.gov/tutorials/parallel_comp/images/heat_interior.gif�
https://computing.llnl.gov/tutorials/parallel_comp/images/heat_edge.gif�

Carnegie Mellon

Spring 2010 ©15-319 Introduction to Cloud Computing

Parallelization Examples: Simple Heat Equation
 Parallel Code:

find out if I am MASTER or WORKER

if I am MASTER
initialize array
send each WORKER starting info and subarray

do until all WORKERS converge
gather from all WORKERS convergence data
broadcast to all WORKERS convergence signal

end do

receive results from each WORKER

else if I am WORKER
receive from MASTER starting info and subarray

do until solution converged
update time
send neighbors my border info
receive from neighbors their border info
update my portion of solution array
determine if my solution has converged

send MASTER convergence data
receive from MASTER convergence signal

end do

send MASTER results
endif

Carnegie Mellon

Spring 2010 ©15-319 Introduction to Cloud Computing

References
 http://en.wikipedia.org/wiki/Parallel_programming_model
 http://www.buyya.com/cluster/v2chap1.pdf
 https://computing.llnl.gov/tutorials/parallel_comp/
 http://www.acm.org/crossroads/xrds8-3/programming.html
 http://researchcomp.stanford.edu/hpc/archives/HPCparallel.pdf
 http://www.mcs.anl.gov/~itf/dbpp/text/node9.html
 http://en.wikipedia.org/wiki/Parallel_computing
 http://www.azalisaudi.com/para/Para-Week2-TypesOfPara.pdf

62

http://en.wikipedia.org/wiki/Parallel_programming_model�
http://www.buyya.com/cluster/v2chap1.pdf�
https://computing.llnl.gov/tutorials/parallel_comp/�
http://www.acm.org/crossroads/xrds8-3/programming.html�
http://researchcomp.stanford.edu/hpc/archives/HPCparallel.pdf�
http://www.mcs.anl.gov/~itf/dbpp/text/node9.html�
http://en.wikipedia.org/wiki/Parallel_computing�
http://www.azalisaudi.com/para/Para-Week2-TypesOfPara.pdf�

	Parallel Processing III�15-319, spring 2010�10th Lecture, Feb 11th
	Review
	Review
	Review
	Review
	High BW & Speed Networks
	Gigabit Ethernet
	Myrinet
	Infiniband
	Lecture Outline
	How to Parallelize
	Automatic VS Manual Parallelism
	(1) Can the Problem be Parallelized?
	(2) Hotspots & Bottlenecks
	(3) Partitioning/Decomposition
	(3) Partitioning/Decomposition
	(3) Partitioning/Decomposition
	(4) Communication
	(4) Communication
	(4) Communication: Considerations
	(4) Communication: Considerations
	(4) Communication: Considerations
	(4) Communication: Considerations
	(4) Communication: Considerations
	(4) Communication: Considerations
	(4) Communication: Considerations
	(5) Synchronization (1/4)
	(5) Synchronization (2/4)
	(5) Synchronization (3/4)
	(5) Synchronization (4/4)
	(6) Data Dependencies
	(6) Data Dependencies
	(7) Load Balancing
	(7) Load Balancing
	(8) Granularity
	Lecture Outline
	Limits and costs of Parallel Computing (1/5)
	Limits and costs of Parallel Computing (2/5)
	Limits and costs of Parallel Computing (3/5)
	Limits and costs of Parallel Computing (4/5)
	Limits and costs of Parallel Computing (5/5)
	Lecture Outline
	Parallel Computing Performance Analysis
	Amdahl’s Law
	Amdahl’s Law: Example
	Amdahl’s Law: Example
	Using Amdahl’s Law in Analyzing Performance of Parallel Computing
	Using Amdahl’s Law in Analyzing Performance of Parallel Computing
	Using Amdahl’s in Parallel Computing: Example
	Using Amdahl’s in Parallel Computing: Example
	Using Amdahl’s in Parallel Computing: Example
	Using Amdahl’s in Parallel Computing: Example
	Lecture Outline
	Parallelization Examples
	Parallelization Examples
	Example: Array Processing
	Example: Array Processing
	Parallelization Examples: Simple Heat Equation
	Parallelization Examples: Simple Heat Equation
	Parallelization Examples: Simple Heat Equation
	Parallelization Examples: Simple Heat Equation
	References

