
Carnegie Mellon

Spring 2010 ©15-319 Introduction to Cloud Computing

Introduction to Cloud Computing

Majd F. Sakr

Distributed Systems
15-319, spring 2010
11th Lecture, Feb 16th

Carnegie Mellon

Spring 2010 ©15-319 Introduction to Cloud Computing 2

Lecture Motivation

 Understand Distributed Systems Concepts
 Understand the concepts / ideas and techniques from

Distributed Systems which have made way to Cloud
Computing

Carnegie Mellon

Spring 2010 ©15-319 Introduction to Cloud Computing

Lecture Outline
 What are Distributed Systems?
 Distributed vs. Parallel Systems
 Advantages and Disadvantages
 Distributed System Design
 Hardware
 Software
 Service Models

 Distributed System Types
 Performance of Distributed Systems
 Programming Distributed Systems

Carnegie Mellon

Spring 2010 ©15-319 Introduction to Cloud Computing

Do you … ?
Tim

e

Now I appreciate
why Cloud

Computing is
important

Now I
know what

Cloud
Computing

is

Distributed
Systems

End of week two
Parallel

Processing

End of week five

Carnegie Mellon

Spring 2010 ©15-319 Introduction to Cloud Computing

What is a Distributed System?

 Distributed Computing: a CS field that studies distributed
systems

 Distributed System: a group of independent/autonomous
computers that
 are networked together
 appear to the user as a one computer
 Work together to achieve a common goal

Carnegie Mellon

Spring 2010 ©15-319 Introduction to Cloud Computing

What is a Distributed System?

 Distributed Computing: a CS field that studies ideas
around designing and building distributed systems and
infrastructure to enable such systems

 Distributed System: a group of independent/autonomous
computers that
 are networked together
 appear to the user as a one computer
 Work together to achieve a common goal

Clouds can be Distributed Systems

Carnegie Mellon

Spring 2010 ©15-319 Introduction to Cloud Computing

History

 Problems that are larger than what a single machine can
handle

 Computer Networks, Message passing were invented to
facilitate distributed systems

 ARPANET eventually became Internet

Carnegie Mellon

Spring 2010 ©15-319 Introduction to Cloud Computing

Where are they used?

 Strategic Systems (Defense / Intelligence)
 Bioinformatics
 Visualization and Graphics
 Economics and Finance
 Scientific Computing

Carnegie Mellon

Spring 2010 ©15-319 Introduction to Cloud Computing

Lecture Outline
 What are Distributed Systems?
 Distributed vs. Parallel Systems
 Advantages and Disadvantages
 Distributed System Design
 Hardware
 Software
 Service Models

 Distributed System Types
 Performance of Distributed Systems
 Programming Distributed Systems

Carnegie Mellon

Spring 2010 ©15-319 Introduction to Cloud Computing

Parallel vs. Distributed Systems
 A concurrent system could be Parallel or

Distributed:

 Two possible Views to make the distinction

 View 1:
 Parallel System : a particular tightly-coupled form

of distributed computing
 Distributed System: a loosely-coupled form of

parallel computing

 View 2:
 Parallel System: processors access a shared

memory to exchange information
 Distributed System: uses a “distributed memory”.

Massage passing is used to exchange information
between the processors as each one has its own
private memory. Distributed

Computing

Carnegie Mellon

Spring 2010 ©15-319 Introduction to Cloud Computing

Further Distinctions

 Granularity
 Parallel Systems are typically finer-grained Distributed Systems
 Distributed Systems are typically the most coarse-grained.

Distributed Systems

Parallel Systems

Carnegie Mellon

Spring 2010 ©15-319 Introduction to Cloud Computing

Lecture Outline
 What are Distributed Systems?
 Distributed vs. Parallel Systems
 Advantages and Disadvantages
 Distributed System Design
 Hardware
 Software
 Service Models

 Distributed System Types
 Performance of Distributed Systems
 Programming Distributed Systems

Carnegie Mellon

Spring 2010 ©15-319 Introduction to Cloud Computing

Advantages of Distributed Systems (1/2)

 …Over Centralized Systems
 Economics:

 lower (price/performance) ratio
 Speed:

 May have a more total computing power than a centralized system
 Enhanced performance through load distributing.

 Inherent Distribution:
 Some applications are inherently distributed

 Availability and Reliability: No single point of failure.
 The system survives even if a small number of machines crash

 Incremental Growth:
 Can add computing power on to your existing infrastructure

vs.

Carnegie Mellon

Spring 2010 ©15-319 Introduction to Cloud Computing

Advantages (2/2)

 …Over Independent PCs
 Computation: can be shared over multiple machines

 Shared management of system: backups & maintenance…

 Data Sharing: many users can access the same common
database

 Resources Sharing: can share expensive peripherals

 Flexibility: Spreading workload over the system CPUs.

Carnegie Mellon

Spring 2010 ©15-319 Introduction to Cloud Computing

Disadvantages

 Software: Developing a distributed system software is hard
 Creating OSs / languages that support distributed systems

concerns

 Network: When network is overloaded/messages lost,
rerouting/rewiring the network is costly/difficult

 Security : more sharing leads to less security especially in
the issues of confidentiality & integrity

 Incremental growth is hard in practice due to changing of
hardware and software

Carnegie Mellon

Spring 2010 ©15-319 Introduction to Cloud Computing

Lecture Outline
 What are Distributed Systems?
 Distributed vs. Parallel Systems
 Advantages and Disadvantages
 Distributed System Design
 Hardware
 Software
 Service Models

 Distributed System Types
 Performance of Distributed Systems
 Programming Distributed Systems

Carnegie Mellon

Spring 2010 ©15-319 Introduction to Cloud Computing

Design Goals/ Characteristics

 Distributed Transparency
 Location
 Migration
 Replication
 Concurrency

 Openness
 Scalability
 Fault-tolerance
 High availability
 Recoverability
 Performance Predictability
 Security

Carnegie Mellon

Spring 2010 ©15-319 Introduction to Cloud Computing

One more characteristic: Heterogeneity

 Distributed Systems are heterogeneous in terms of:

 Hardware: PCs, mainframes, servers, …

 Software: different operating systems (MS Windows, UNIX, …)

 Unconventional devices: telephone switches, robots, …

 Networking: different protocols and networks (Ethernet, TCP/IP, FDDI, …)

http://anso.vtt.fi/graphics/ANSO_innovations.jpg

Carnegie Mellon

Spring 2010 ©15-319 Introduction to Cloud Computing

One more characteristic: Heterogeneity

 Distributed Systems are heterogeneous in terms of:

 Hardware: PCs, mainframes, servers, …

 Software: different operating systems (MS Windows, UNIX, …)

 Unconventional devices: telephone switches, robots, …

 Networking: different protocols and networks (Ethernet, TCP/IP, FDDI, …)

 Middleware masks this heterogeneity
» An additional software layer

Carnegie Mellon

Spring 2010 ©15-319 Introduction to Cloud Computing

Lecture Outline
 What are Distributed Systems?
 Distributed vs. Parallel Systems
 Advantages and Disadvantages
 Distributed System Design
 Hardware
 Software
 Service Models

 Distributed System Types
 Performance of Distributed Systems
 Programming Distributed Systems

Carnegie Mellon

Spring 2010 ©15-319 Introduction to Cloud Computing

Distributed Systems Hardware

 MIMD
 Memory differentiated

 Multicomputers
 Multiprocessors

 Interconnection Network
 Bus System
 Switched System

 Coupling
 Tightly coupled hardware
 Loosely coupled hardware

Carnegie Mellon

Spring 2010 ©15-319 Introduction to Cloud Computing

Hardware: MIMD

 Remember Flynn’s Taxonomy?

 The four possible combinations:
 SISD: in traditional uniprocessor computers
 MISD: Multiple concurrent instructions operating on the same data

element. Not useful!
 SIMD: Single instruction operates on multiple data elements in parallel
 MIMD: Covers parallel & distributed systems and machines that contain

multiple computers
Single
Data

Multiple
Data

Single
Instruction

Multiple
Instruction

Carnegie Mellon

Spring 2010 ©15-319 Introduction to Cloud Computing

Hardware: MIMD

 Remember Flynn’s Taxonomy?

 The four possible combinations:
 SISD: in traditional uniprocessor computers
 MISD: Multiple concurrent instructions operating on the same data

element. Not useful!
 SIMD: Single instruction operates on multiple data elements in parallel
 MIMD: Covers parallel & distributed systems and machines that contain

multiple computers

 Distributed systems are MIMD
Single
Data

Multiple
Data

Single
Instruction

Multiple
Instruction

Carnegie Mellon

Spring 2010 ©15-319 Introduction to Cloud Computing

Hardware: Memory Differentiated

 Multicomputers: machines without shared memory
 Each machine has its special memory and address space
 Example: multiple PCs connected by a network

 Multiprocessors: machines with shared memory
 Single virtual address space
 Access/modify same memory locations
 SMP (Symmetric Multiprocessor): all processors are of the same type

 Bus-based multiprocessor
 One memory several processors
 Bus Overloaded  lower performance

– Cache memory allows adding
more CPUs before bus gets overloaded

Carnegie Mellon

Spring 2010 ©15-319 Introduction to Cloud Computing

Hardware: Interconnection Network

 Bus System:
 Has single network medium connecting all processors
 Medium could be: bus, backplane, cable, …
 Examples:

 Multiprocessors: Sequent, Encore SGI
 Multicomputers: Workstations on a LAN

 Switched System
 Has individual wires between machines
 Messages sent along the wires
 Routing/switching decisions made in step-by-step manner along

the route
 Examples:

 Multiprocessors: Ultracomputer, RP3, …
 Multicomputers: Hypercube, Transputer, …

Carnegie Mellon

Spring 2010 ©15-319 Introduction to Cloud Computing

Hardware: Coupling

 Tightly coupled hardware
 Small delay in its network
 Fast data transfer rate
 Common in parallel systems
 Multiprocessors are usually tightly coupled

 Loosely coupled hardware
 Longer delay in sending messages between machines
 Slower data transfer rate
 Common in distributed systems
 Multicomputers are usually tightly coupled

Carnegie Mellon

Spring 2010 ©15-319 Introduction to Cloud Computing

Lecture Outline
 What are Distributed Systems?
 Distributed vs. Parallel Systems
 Advantages and Disadvantages
 Distributed System Design
 Hardware
 Software
 Service Models

 Distributed System Types
 Performance of Distributed Systems
 Programming Distributed Systems

Carnegie Mellon

Spring 2010 ©15-319 Introduction to Cloud Computing

Distributed Systems Software

 Network OS
 OS containing components that facilitate network resource access

/ sharing
 All modern OSes have network eatures

 Integrated Distributed System
 Multiprocessor timesharing system
 Multics and UNIX

Carnegie Mellon

Spring 2010 ©15-319 Introduction to Cloud Computing

Distributed Systems Software

Loosely-coupled Tightly-coupled

 Software Type: Network OS
 Multicomputer
 Each machine running its OS. OSes
may differ.

 Software Type: Integrated Distributed
System

 Group of Shared machines work like
one computer but do not have shared
memory

 Doesn’t make sense  Software Type: Multiprocessor
Timesharing System
 E.g. UNIX machine with several
processors and several terminals

Software

Ha
rd

wa
re Lo
os

ely
-

co
up

led
Ti

gh
tly

-
co

up
led

Carnegie Mellon

Spring 2010 ©15-319 Introduction to Cloud Computing

Lecture Outline
 What are Distributed Systems?
 Advantages and Disadvantages
 Design Issues
 Distributed Systems Hardware
 Distributed Systems Software
 Service Models
 Types of Distributed Systems
 Performance
 Programming Distributed Systems

Carnegie Mellon

Spring 2010 ©15-319 Introduction to Cloud Computing

Service Models

 Centralized model

 Client-server model

 Peer-to-peer model

 Thin and thick clients

 Multi-tier client-server architectures

 Processor-pool model

Carnegie Mellon

Spring 2010 ©15-319 Introduction to Cloud Computing

Service Models: Centralized

 Application is hosted on one machine and user
machines connect to it

 Example: Mainframes to which clients connect via a
terminal

 Problems:
 Scaling is not easy.

 There is limit on the number of CPUs in a system. Eventually
it needs to be replaced

 Multiple entities competing for the same resources

Carnegie Mellon

Spring 2010 ©15-319 Introduction to Cloud Computing

Service Models: Client-server

 3 Components:
 Service

 Per service, there exists:
 Server: the service hosting machine
 Client: requests the service

– Could be a server for another service

 Assumption: certain machines are better suited for
providing certain services
 Eg. A file server would have a large amount of disk space and

backup facilities

 Example: Workstation Model, Internet, SaaS etc.

Carnegie Mellon

Spring 2010 ©15-319 Introduction to Cloud Computing

Service Models: Peer-to-peer

 Assumption: machines have equivalent capabilities.
 No one machine is dedicated to provide special services for

others
 Example:
 File-Sharing among PCs in a LAN
 BitTorrent, Napster

 Active Research Area

Carnegie Mellon

Spring 2010 ©15-319 Introduction to Cloud Computing

BitTorrent Example

Carnegie Mellon

Spring 2010 ©15-319 Introduction to Cloud Computing

Service Models: Peer-to-peer

 WWW
 A distributed system (of information).
 An evolving system to publish and access resources and services on

the Internet
 CORBA is a good tool for creating a distributed system of

programming objects

Carnegie Mellon

Spring 2010 ©15-319 Introduction to Cloud Computing

Service Models: Thin and thick clients

 How is software partitioned between clients and server?

 What are the client’s responsibilities?
 Thin Client

 Client: small amount of client software
 Servers: bulk of processing
 No need for much administration, expansion slots, CDs, or even disks.
 Like Informed Appliance: only needs connectivity to resource-rich

networking
 Thick Client

 Client: bulk of data processing
 Servers: services like web services, file storage
 Needs: faster processors, high capacity storage devices and a lot of

system configuration and administration.

Carnegie Mellon

Spring 2010 ©15-319 Introduction to Cloud Computing

Service Models: Multi-tier client-server
architectures

 There is hierarchy in connectivity.
 A server would contact other servers for services to

accomplish it tasks.

 Two-tier architecture

 Three-tier architecture

 Example: Internet DNS

Carnegie Mellon

Spring 2010 ©15-319 Introduction to Cloud Computing

Service Models: Processor-pool

 How about idle computing resources?
 Either you ignore …
 Or you try to utilize using all of them to run jobs …

 Processor-pool model: CPUs are dynamically assigned to
processes on demand

 Example : Hadoop’s JobTracker System distributes map
and reduce tasks among a pool of processors

Carnegie Mellon

Spring 2010 ©15-319 Introduction to Cloud Computing

Lecture Outline
 What are Distributed Systems?
 Distributed vs. Parallel Systems
 Advantages and Disadvantages
 Distributed System Design
 Hardware
 Software
 Service Models

 Distributed System Types
 Performance of Distributed Systems
 Programming Distributed Systems

Carnegie Mellon

Spring 2010 ©15-319 Introduction to Cloud Computing

Distributed System Types

 Distributed Computing Systems
 Cluster Computing
 Grid Computing

 Distributed Information Systems
 Transaction Processing Systems

 Distributed Pervasive Systems
 Eg: Smart Homes, Sensor-Networks etc.

Carnegie Mellon

Spring 2010 ©15-319 Introduction to Cloud Computing

Types: Distributed Computing Systems (1/3)

 Configured for High-performance computing

http://www.cs.vu.nl/~steen/courses/ds-slides/notes.01.pdf

http://www.cs.vu.nl/~steen/courses/ds-slides/notes.01.pdf�

Carnegie Mellon

Spring 2010 ©15-319 Introduction to Cloud Computing

Types: Distributed Computing Systems (2/3)

 Cluster Computing

 Collection of high-end computers (workstations/PCs)
usually closely connected through a LAN

 Homogeneous: Same OS, and similar Hardware

 Brought to work together in a problem like a single computer
 More cost-effective than single computers with same speed

and capabilities

Carnegie Mellon

Spring 2010 ©15-319 Introduction to Cloud Computing

Types: Distributed Computing Systems (3/3)

 Grid Computing
 Clusters may be combined to form a "Grid“ of a massive computing

power
 Heterogeneous: systems differ in hardware/software/ administrative

domains and deployed network technologies
 Can easily span a WAN
 For collaborations, grids use virtual organizations.

http://www.adarshpatil.com/grid/gridcomputing.gif

Carnegie Mellon

Spring 2010 ©15-319 Introduction to Cloud Computing

Grid Computing in Detail

 Types of Grids
 Computational Grid – Shared Compute Resources
 Data Grid – Access to Large amounts of Data spread across various

sites
 Collaboration Grid - multiple collaboration systems for

collaborating on a common issue.

 Grid Computing is an enabling technology and inspiration
for Cloud Computing

 Applications / Domains
 Scientific Computing
 Manufacturing
 Financial services
 Government.

Carnegie Mellon

Spring 2010 ©15-319 Introduction to Cloud Computing

Grid Components

Carnegie Mellon

Spring 2010 ©15-319 Introduction to Cloud Computing

Types: Distributed Information Systems (1/4)

 Most distributed systems used today are forms
of traditional Information systems

 Example: Transaction Processing Systems
 Data is processed using transactions
 Fault-Tolerance, Data Integrity and Security is of

extreme importance
 Such systems are usually turnkey and cannot be used

for general-purpose computing
 Eg: Financial Processing, Airline Reservation systems.

Carnegie Mellon

Spring 2010 ©15-319 Introduction to Cloud Computing

Performance

 Measures
 Response time
 Jobs/hour
 Quality of services
 Balancing computer loads
 System utilization
 Fraction of network capacity

 Messaging Delays affect:
 Transmission time
 Protocol handling

 Grain-size of computation

Carnegie Mellon

Spring 2010 ©15-319 Introduction to Cloud Computing

Lecture Outline
 What are Distributed Systems?
 Distributed vs. Parallel Systems
 Advantages and Disadvantages
 Distributed System Design
 Hardware
 Software
 Service Models

 Distributed System Types
 Performance of Distributed Systems
 Programming Distributed Systems

Carnegie Mellon

Spring 2010 ©15-319 Introduction to Cloud Computing

Performance: Measures

 Responsiveness
 fast and consistent response to interactive applications

 Throughput or Jobs/Hour
 It is the rate at which computational work is done

 Quality of services
 The ability to meet qualities of users needs:

 Meet the deadlines.
 Provide different priority needs to different

applications/ users/ data flows
 guarantee a certain a performance level to a user/

application/ data flow

Carnegie Mellon

Spring 2010 ©15-319 Introduction to Cloud Computing

Performance: Measures

 Balancing computer loads
 load balancing techniques:
 Example: moving partially-completed work as the loads on

hosts changes

 System utilization (in %)
 Network-related Metrics
 Messaging Delay
 Protocol Overhead
 Round-Trip Time

Carnegie Mellon

Spring 2010 ©15-319 Introduction to Cloud Computing

Lecture Outline
 What are Distributed Systems?
 Distributed vs. Parallel Systems
 Advantages and Disadvantages
 Distributed System Design
 Hardware
 Software
 Service Models

 Distributed System Types
 Performance of Distributed Systems
 Programming Distributed Systems

Carnegie Mellon

Spring 2010 ©15-319 Introduction to Cloud Computing

Programming Distributed Systems

 Distributed systems tend to have distributed memory
 By far, the most common programming model is Message

Passing
 The processes on a distributed system communicate by

passing messages which can be either control or data
messages.

 Message Passing Interface (MPI) is a standardized
protocol and API for this type of model

 Popular programming interfaces are Fortran, C
 Implementations: MPI-Ch2, OpenMPI

Carnegie Mellon

Spring 2010 ©15-319 Introduction to Cloud Computing

Example with Message Passing

 Let’s start with Parallel WordCount on Documents

 We are looking for a
word or pattern in a set
of documents

 We could distribute the
work among each
processor in a cluster

word?

word

Carnegie Mellon

Spring 2010 ©15-319 Introduction to Cloud Computing

The Hardware:

 You are given the following cluster with 4 nodes:

NETWORK

0

1

2

3

Master
Node

 Distribute the documents over each node

Carnegie Mellon

Spring 2010 ©15-319 Introduction to Cloud Computing

Writing an MPI program

 The same program runs on each node
 We use conditional statements to figure out what the

individual node has to do
 First we initialize the MPI and figure out the “rank” of

each node in the cluster
 Then we perform operations associated with the rank.

Carnegie Mellon

Spring 2010 ©15-319 Introduction to Cloud Computing

Message Passing Pseudo code

Get my node rank (id)
Get total number of nodes (p)

For (i=id; I < total number of docs; i+=p)
scan document
if (word is present in document)

count++;

Collect the “count” values from all the worker nodes and sum
it up on the master node.

Node 0 does doc 0, 4, 8,12 …
Node 1 does doc 1, 5, 9, 13 …
Node 2 does doc 2, 6, 10, 14 …
Node 3 does doc 3, 7, 11, 15 …

Carnegie Mellon

Spring 2010 ©15-319 Introduction to Cloud Computing

MPI Code (wordcount.c)
#include <mpi.h>

int main (int argc, char *argv[]) {
int i,id,p, count, global_count;
int check_doc (char[], char[]); //Function Declaration

char filename[] = get_files(); //List of Files
char pattern = “word”;
count = 0;

MPI_Init (&argc, &argv); //Initialize MPI Cluster
MPI_Comm_rank (MPI_COMM_WORLD, &id); //Get my rank
MPI_Comm_size (MPI_COMM_WORLD, &p); //Get total number of nodes

for (i = id; i < TOTAL_NUM_DOCS; i += p)
count += check_doc (filename[i], pattern); //Function to check input

//Reduce all the counts to global count on master node
MPI_Reduce (&count, &global_count, 1, MPI_INT, MPI_SUM, 0,

MPI_COMM_WORLD);

if (id==0) printf (“The pattern appears %d times\n", global_count);

MPI_Finalize();
return 0;

}

Carnegie Mellon

Spring 2010 ©15-319 Introduction to Cloud Computing

Running the MPI Code

% mpirun -np 3 wordcount

The pattern appears 456 times

Number of Nodes

Carnegie Mellon

Spring 2010 ©15-319 Introduction to Cloud Computing

Another Example: Matrix-Vector Multiply

 Multiply a x*y Matrix with vector sized x

2 1 3 4 0

5 -1 2 -2 4

0 3 4 1 2

2 3 1 -3 0

3

1

4

0

3

19

34

25

13

x =

 Each row of the resultant vector can be computed
independently and in parallel

A B C

Carnegie Mellon

Spring 2010 ©15-319 Introduction to Cloud Computing

Decomposition

 Let’s give each row and the entire vector to each machine

0

1

2

3

Master
Node

2 1 3 4 0

3

1

4

0

3

5 -1 2 -2 4

3

1

4

0

3

0 3 4 1 2

3

1

4

0

3

2 3 1 -3 0

3

1

4

0

3

Carnegie Mellon

Spring 2010 ©15-319 Introduction to Cloud Computing

Aggregating the result

 Each node then passes it’s result to the master node for
the final vector

0

1

2

3

Master
Node19

34

25

13

34

25

13

Final Result

Carnegie Mellon

Spring 2010 ©15-319 Introduction to Cloud Computing

Program Pseudocode

Get my node rank (id)
Get total number of nodes (p)

If (master) send every node one row and vector
If (worker) Collect row array A and vector B

For (i=0; I < row_size; i++)
C[i] += A[i] * B[i]

If (worker) Send results to Master
If (master) Collect results from each worker, output result

Carnegie Mellon

Spring 2010 ©15-319 Introduction to Cloud Computing

MPI Code (m_v_multiply.c)
#include <stdio.h>
#include <mpi.h>
#include "../MyMPI.h“

int main (int argc, char *argv[])
{

double **a; /* First factor, a matrix */
double *b; /* Second factor, a vector */
double *c_block; /* Partial product vector */
double *c; /* Replicated product vector */
double *storage; /* Matrix elements stored here */
int i, j; /* Loop indices */
int id; /* Process ID number */
int m; /* Rows in matrix */
int n; /* Columns in matrix */
int nprime; /* Elements in vector */
int p; /* Number of processes */
int rows; /* Number of rows on this process */

Carnegie Mellon

Spring 2010 ©15-319 Introduction to Cloud Computing

MPI Code (m_v_multiply.c)
/* Initialize MPI Environment */
MPI_Init (&argc, &argv);
MPI_Comm_rank (MPI_COMM_WORLD, &id);
MPI_Comm_size (MPI_COMM_WORLD, &p);

/*Read and Distribute Matrix and Vector from Command Line*/
read_row_striped_matrix (argv[1], (void *) &a,(void *) &storage,

MPI_DOUBLE, &m, &n, MPI_COMM_WORLD);
rows = BLOCK_SIZE(id,p,m);
read_replicated_vector (argv[2], (void *) &b, MPI_DOUBLE, &nprime,

MPI_COMM_WORLD);

/*Read and Distribute Matrix and Vector from Command Line*/
c_block = (double *) malloc (rows * sizeof(double));
c = (double *) malloc (n * sizeof(double));

for (i = 0; i < rows; i++) /*Compute Local Product*/
{

c_block[i] = 0.0;
for (j = 0; j < n; j++)

c_block[i] += a[i][j] * b[j];
}
/*Collect Results*/
replicate_block_vector (c_block, n, (void *) c, MPI_DOUBLE,

MPI_COMM_WORLD);
MPI_Finalize();

}

Carnegie Mellon

Spring 2010 ©15-319 Introduction to Cloud Computing

Closing Notes

 Link between Distributed Systems and Cloud Computing
 Lessons Learned in Building Large-Scale, Distributed

Systems for Cloud
 Similar Goals, Requirements

 Cloud Computing combines the best of these technologies
and techniques

Carnegie Mellon

Spring 2010 ©15-319 Introduction to Cloud Computing

Do you … ?
Tim

e

Now I appreciate
why Cloud

Computing is
important

Now I
know what

Cloud
Computing

is

Distributed
Systems

End of week two
Parallel

Processing

End of week five

Carnegie Mellon

Spring 2010 ©15-319 Introduction to Cloud Computing

References

 www.cis.upenn.edu/~lee/00cse380/lectures/ln13-ds.ppt
 http://code.google.com/edu/parallel/dsd-tutorial.html
 http://www.ida.liu.se/~TDDD25/lecture-notes/lect1.frm.pdf
 http://www.cs.rutgers.edu/~pxk/rutgers/notes/content/01-

intro.pdf
 http://www.computing.dcu.ie/~kpodesta/distributed/
 http://www2.cs.uregina.ca/~hamilton/courses/430/notes/no

tes1.htm
 http://www.cs.vu.nl/~steen/courses/ds-slides/notes.01.pdf
 http://en.wikipedia.org/wiki/Middleware#Types_of_middlew

are
 www.idi.ntnu.no/~conradi/dif8914/p1a-coulouris-ch1-2.ppt

http://www.cis.upenn.edu/~lee/00cse380/lectures/ln13-ds.ppt�
http://code.google.com/edu/parallel/dsd-tutorial.html�
http://www.ida.liu.se/~TDDD25/lecture-notes/lect1.frm.pdf�
http://www.cs.rutgers.edu/~pxk/rutgers/notes/content/01-intro.pdf�
http://www.cs.rutgers.edu/~pxk/rutgers/notes/content/01-intro.pdf�
http://www.computing.dcu.ie/~kpodesta/distributed/�
http://www2.cs.uregina.ca/~hamilton/courses/430/notes/notes1.htm�
http://www2.cs.uregina.ca/~hamilton/courses/430/notes/notes1.htm�
http://www.cs.vu.nl/~steen/courses/ds-slides/notes.01.pdf�
http://en.wikipedia.org/wiki/Middleware�
http://en.wikipedia.org/wiki/Middleware�
http://www.idi.ntnu.no/~conradi/dif8914/p1a-coulouris-ch1-2.ppt�

	Distributed Systems�15-319, spring 2010�11th Lecture, Feb 16th
	Lecture Motivation
	Lecture Outline
	Do you … ?
	What is a Distributed System?
	What is a Distributed System?
	History
	Where are they used?
	Lecture Outline
	Parallel vs. Distributed Systems
	Further Distinctions
	Lecture Outline
	Advantages of Distributed Systems (1/2)
	Advantages (2/2)
	Disadvantages
	Lecture Outline
	Design Goals/ Characteristics
	One more characteristic: Heterogeneity
	One more characteristic: Heterogeneity
	Lecture Outline
	Distributed Systems Hardware
	Hardware: MIMD
	Hardware: MIMD
	Hardware: Memory Differentiated
	Hardware: Interconnection Network
	Hardware: Coupling
	Lecture Outline
	Distributed Systems Software
	Distributed Systems Software
	Lecture Outline
	Service Models
	Service Models: Centralized
	Service Models: Client-server
	Service Models: Peer-to-peer
	BitTorrent Example
	Service Models: Peer-to-peer
	Service Models: Thin and thick clients
	 Service Models: Multi-tier client-server architectures
	Service Models: Processor-pool
	Lecture Outline
	Distributed System Types
	Types: Distributed Computing Systems (1/3)
	Types: Distributed Computing Systems (2/3)
	Types: Distributed Computing Systems (3/3)
	Grid Computing in Detail
	Grid Components
	Types: Distributed Information Systems (1/4)
	Performance
	Lecture Outline
	Performance: Measures
	Performance: Measures
	Lecture Outline
	Programming Distributed Systems
	Example with Message Passing
	The Hardware:
	Writing an MPI program
	Message Passing Pseudo code
	MPI Code (wordcount.c)
	Running the MPI Code
	Another Example: Matrix-Vector Multiply
	Decomposition
	Aggregating the result
	Program Pseudocode
	MPI Code (m_v_multiply.c)
	MPI Code (m_v_multiply.c)
	Closing Notes
	Do you … ?
	References

