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Lecture Motivation

 Understand Distributed Systems Concepts
 Understand the concepts / ideas and techniques from 

Distributed Systems which have made way to Cloud 
Computing
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Lecture Outline
 What are Distributed Systems?
 Distributed vs. Parallel Systems
 Advantages and Disadvantages
 Distributed System Design
 Hardware
 Software
 Service Models

 Distributed System Types
 Performance of Distributed Systems
 Programming Distributed Systems
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why Cloud 
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know what 
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Computing 

is
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What is a Distributed System?

 Distributed Computing: a CS field that studies distributed 
systems

 Distributed System: a group of independent/autonomous 
computers that 
 are networked together
 appear to the user as a one computer
 Work together to achieve a common goal
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What is a Distributed System?

 Distributed Computing: a CS field that studies ideas 
around designing and building distributed systems and 
infrastructure to enable such systems

 Distributed System: a group of independent/autonomous 
computers that 
 are networked together
 appear to the user as a one computer
 Work together to achieve a common goal

Clouds can be Distributed Systems
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History

 Problems that are larger than what a single machine can 
handle

 Computer Networks, Message passing were invented to 
facilitate distributed systems

 ARPANET eventually became Internet
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Where are they used?

 Strategic Systems (Defense / Intelligence)
 Bioinformatics
 Visualization and Graphics
 Economics and Finance
 Scientific Computing
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Parallel vs. Distributed Systems
 A concurrent system could be Parallel or 

Distributed:

 Two possible Views to make the distinction

 View 1:
 Parallel System : a particular tightly-coupled form 

of distributed computing
 Distributed System: a loosely-coupled form of 

parallel computing 

 View 2:
 Parallel System: processors access a shared 

memory to exchange information 
 Distributed System: uses a “distributed memory”.  

Massage passing is used to exchange information 
between the processors as each one has its own 
private memory. Distributed 

Computing
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Further Distinctions

 Granularity
 Parallel Systems are typically finer-grained Distributed Systems
 Distributed Systems are typically the most coarse-grained.

Distributed Systems

Parallel Systems
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Advantages of Distributed Systems (1/2)

 …Over Centralized Systems
 Economics:

 lower (price/performance) ratio
 Speed: 

 May have a more total computing power than a centralized system
 Enhanced performance through load distributing.

 Inherent Distribution:
 Some applications are inherently distributed

 Availability and Reliability: No single point of failure. 
 The system survives even if a small number of machines crash

 Incremental Growth:
 Can add computing power on to your existing infrastructure

vs.
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Advantages (2/2)

 …Over Independent PCs
 Computation: can be shared over multiple machines

 Shared management of system: backups & maintenance…

 Data Sharing: many users can access the same common 
database

 Resources Sharing: can share expensive peripherals 

 Flexibility: Spreading workload over the system CPUs. 
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Disadvantages

 Software: Developing a distributed system software is hard
 Creating OSs / languages that support distributed systems 

concerns

 Network:  When network is overloaded/messages lost, 
rerouting/rewiring the network is costly/difficult

 Security : more sharing leads to less security especially in 
the issues of confidentiality & integrity

 Incremental growth is hard in practice due to changing of 
hardware and software
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Design Goals/ Characteristics

 Distributed Transparency
 Location
 Migration
 Replication 
 Concurrency

 Openness
 Scalability
 Fault-tolerance  
 High availability
 Recoverability
 Performance Predictability
 Security
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One more characteristic: Heterogeneity

 Distributed Systems are heterogeneous in terms of:

 Hardware: PCs, mainframes, servers, …

 Software: different operating systems (MS Windows, UNIX, …)

 Unconventional devices: telephone switches, robots, …

 Networking: different protocols and networks (Ethernet, TCP/IP, FDDI, …)

http://anso.vtt.fi/graphics/ANSO_innovations.jpg



Carnegie Mellon

Spring 2010 ©15-319  Introduction to Cloud Computing

One more characteristic: Heterogeneity

 Distributed Systems are heterogeneous in terms of:

 Hardware: PCs, mainframes, servers, …

 Software: different operating systems (MS Windows, UNIX, …)

 Unconventional devices: telephone switches, robots, …

 Networking: different protocols and networks (Ethernet, TCP/IP, FDDI, …)

 Middleware masks this heterogeneity 
» An additional software layer
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Distributed Systems Hardware

 MIMD
 Memory differentiated

 Multicomputers
 Multiprocessors

 Interconnection Network
 Bus System
 Switched System

 Coupling
 Tightly coupled hardware
 Loosely coupled hardware
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Hardware: MIMD

 Remember Flynn’s Taxonomy?

 The four possible combinations:
 SISD: in traditional uniprocessor computers
 MISD: Multiple concurrent instructions operating on the same data 

element. Not useful!
 SIMD: Single instruction operates on multiple data elements in parallel
 MIMD: Covers parallel & distributed systems and machines that contain 

multiple computers
Single 
Data

Multiple 
Data

Single 
Instruction

Multiple
Instruction
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Hardware: MIMD

 Remember Flynn’s Taxonomy?

 The four possible combinations:
 SISD: in traditional uniprocessor computers
 MISD: Multiple concurrent instructions operating on the same data 

element. Not useful!
 SIMD: Single instruction operates on multiple data elements in parallel
 MIMD: Covers parallel & distributed systems and machines that contain 

multiple computers

 Distributed systems are MIMD
Single 
Data

Multiple 
Data

Single 
Instruction

Multiple
Instruction
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Hardware: Memory Differentiated 

 Multicomputers: machines without shared memory
 Each machine has its special memory and address space
 Example: multiple PCs connected by a network

 Multiprocessors: machines with shared memory
 Single virtual address space
 Access/modify same memory locations
 SMP (Symmetric Multiprocessor):  all processors are of the same type

 Bus-based multiprocessor
 One memory several processors
 Bus Overloaded  lower performance

– Cache memory allows adding 
more CPUs before bus gets overloaded
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Hardware: Interconnection Network

 Bus System: 
 Has single network medium connecting all processors
 Medium could be: bus, backplane, cable, …
 Examples:

 Multiprocessors: Sequent, Encore SGI 
 Multicomputers: Workstations on a LAN

 Switched System
 Has individual wires between machines
 Messages sent along the wires
 Routing/switching decisions made in step-by-step manner along 

the route
 Examples:

 Multiprocessors: Ultracomputer, RP3, …
 Multicomputers: Hypercube, Transputer, …
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Hardware: Coupling

 Tightly coupled hardware
 Small delay in its network
 Fast data transfer rate
 Common in parallel systems
 Multiprocessors are usually tightly coupled

 Loosely coupled hardware
 Longer delay in sending messages between machines
 Slower data transfer rate
 Common in distributed systems
 Multicomputers are usually tightly coupled
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Distributed Systems Software

 Network OS
 OS containing components that facilitate network resource access 

/ sharing
 All modern OSes have network eatures

 Integrated Distributed System
 Multiprocessor timesharing system
 Multics and UNIX
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Distributed Systems Software

Loosely-coupled Tightly-coupled

 Software Type:  Network OS
 Multicomputer
 Each machine running its OS. OSes 
may differ.

 Software Type: Integrated Distributed 
System

 Group of Shared machines work like 
one computer but do not have shared 
memory

 Doesn’t make sense  Software Type: Multiprocessor 
Timesharing System 
 E.g. UNIX machine with several 
processors and several terminals

Software
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Service Models

 Centralized model

 Client-server model

 Peer-to-peer model

 Thin and thick clients

 Multi-tier client-server architectures

 Processor-pool model
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Service Models: Centralized 

 Application is hosted on one machine and user 
machines connect to it

 Example: Mainframes to which clients connect via a 
terminal 

 Problems:
 Scaling is not easy. 

 There is limit on the number of CPUs in a system. Eventually 
it needs to be replaced

 Multiple entities competing for the same resources
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Service Models: Client-server 

 3 Components:
 Service

 Per service, there exists:
 Server: the service hosting machine
 Client: requests the service

– Could be a server for another service

 Assumption: certain machines are better  suited for 
providing certain services
 Eg. A file server would have a large amount of disk space and 

backup facilities

 Example: Workstation Model, Internet, SaaS etc.



Carnegie Mellon

Spring 2010 ©15-319  Introduction to Cloud Computing

Service Models: Peer-to-peer

 Assumption: machines have equivalent capabilities.
 No one machine is dedicated to provide special services for 

others
 Example:
 File-Sharing among PCs in a LAN
 BitTorrent, Napster

 Active Research Area
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BitTorrent Example
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Service Models: Peer-to-peer

 WWW
 A distributed system (of information). 
 An evolving system to publish and access resources and services on 

the Internet
 CORBA is a good tool for creating a distributed system of 

programming objects
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Service Models: Thin and thick clients

 How is software partitioned between clients and server?

 What are the client’s responsibilities?
 Thin Client

 Client: small amount of client software 
 Servers: bulk of processing 
 No need for much administration, expansion slots, CDs, or even disks.
 Like Informed Appliance: only needs connectivity to resource-rich 

networking
 Thick Client

 Client: bulk of data processing 
 Servers: services like web services, file storage
 Needs: faster processors, high capacity storage devices and a lot of 

system configuration and administration.
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Service Models: Multi-tier client-server 
architectures

 There is hierarchy in connectivity. 
 A server would contact other servers for services to 

accomplish it tasks. 

 Two-tier architecture

 Three-tier architecture

 Example: Internet DNS
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Service Models: Processor-pool

 How about idle computing resources?
 Either you ignore …
 Or you try to utilize using all of them to run jobs …

 Processor-pool model: CPUs are dynamically assigned to 
processes on demand

 Example : Hadoop’s JobTracker System distributes map 
and reduce tasks among a pool of processors
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Distributed System Types

 Distributed Computing Systems
 Cluster Computing
 Grid Computing

 Distributed Information Systems
 Transaction Processing Systems

 Distributed Pervasive Systems
 Eg: Smart Homes, Sensor-Networks etc.
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Types: Distributed Computing Systems (1/3)

 Configured for High-performance computing

http://www.cs.vu.nl/~steen/courses/ds-slides/notes.01.pdf

http://www.cs.vu.nl/~steen/courses/ds-slides/notes.01.pdf�
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Types: Distributed Computing Systems (2/3)

 Cluster Computing

 Collection of high-end computers (workstations/PCs)
usually closely connected through a LAN

 Homogeneous: Same OS, and similar Hardware

 Brought to work together in a problem like a single computer
 More cost-effective than single computers with same speed 

and capabilities
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Types: Distributed Computing Systems (3/3)

 Grid Computing
 Clusters may be combined to form a "Grid“ of a massive computing 

power
 Heterogeneous:  systems differ in hardware/software/ administrative 

domains and deployed network technologies
 Can easily span a WAN
 For collaborations, grids use virtual organizations. 

http://www.adarshpatil.com/grid/gridcomputing.gif
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Grid Computing in Detail

 Types of Grids
 Computational Grid – Shared Compute Resources
 Data Grid – Access to Large amounts of Data spread across various 

sites
 Collaboration Grid - multiple collaboration systems for 

collaborating on a common issue. 

 Grid Computing is an enabling technology and inspiration 
for Cloud Computing

 Applications / Domains
 Scientific Computing
 Manufacturing 
 Financial services
 Government. 
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Grid Components
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Types: Distributed Information Systems (1/4)

 Most distributed systems used today are forms 
of traditional Information systems

 Example: Transaction Processing Systems
 Data is processed using transactions
 Fault-Tolerance, Data Integrity and Security is of 

extreme importance
 Such systems are usually turnkey and cannot be used 

for general-purpose computing
 Eg: Financial Processing, Airline Reservation systems.
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Performance

 Measures
 Response time
 Jobs/hour
 Quality of services
 Balancing computer loads
 System utilization
 Fraction of network capacity

 Messaging Delays affect:
 Transmission time
 Protocol handling

 Grain-size of computation
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Performance: Measures

 Responsiveness
 fast and consistent response to interactive applications 

 Throughput or Jobs/Hour
 It is the rate at which computational work is done

 Quality of services
 The ability to meet qualities of users needs:

 Meet the deadlines.
 Provide different priority needs to different 

applications/ users/ data flows
 guarantee a certain a performance level to a user/ 

application/ data flow 
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Performance: Measures

 Balancing computer loads
 load balancing techniques: 
 Example: moving partially-completed work as the loads on 

hosts changes

 System utilization (in %)
 Network-related Metrics
 Messaging Delay
 Protocol Overhead
 Round-Trip Time
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Programming Distributed Systems

 Distributed systems tend to have distributed memory
 By far, the most common programming model is Message 

Passing
 The processes on a distributed system communicate by 

passing messages which can be either control or data 
messages.

 Message Passing Interface (MPI) is a standardized 
protocol and API for this type of model

 Popular programming interfaces are Fortran, C
 Implementations: MPI-Ch2, OpenMPI
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Example with Message Passing

 Let’s start with Parallel WordCount on Documents

 We are looking for a 
word or pattern in a set 
of documents

 We could distribute the 
work among each 
processor in a cluster

word?

word
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The Hardware:

 You are given the following cluster with 4 nodes:

NETWORK

0

1

2

3

Master 
Node

 Distribute the documents over each node
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Writing an MPI program

 The same program runs on each node
 We use conditional statements to figure out what the 

individual node has to do
 First we initialize the MPI and figure out the “rank” of 

each node in the cluster
 Then we perform operations associated with the rank. 
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Message Passing Pseudo code

Get my node rank (id)
Get total number of nodes (p)

For (i=id; I < total number of docs; i+=p)
scan document
if (word is present in document)

count++;

Collect the “count” values from all the worker nodes and sum 
it up on the master node.

Node 0 does doc 0, 4, 8,12 …
Node 1 does doc 1, 5, 9, 13 …
Node 2 does doc  2, 6, 10, 14 …
Node 3 does doc 3, 7, 11, 15 …
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MPI Code (wordcount.c)
#include <mpi.h>

int main (int argc, char *argv[]) {
int i,id,p, count, global_count; 
int check_doc (char[], char[]); //Function Declaration

char filename[] = get_files(); //List of Files
char pattern = “word”;
count = 0; 

MPI_Init (&argc, &argv); //Initialize MPI Cluster
MPI_Comm_rank (MPI_COMM_WORLD, &id); //Get my rank
MPI_Comm_size (MPI_COMM_WORLD, &p);  //Get total number of nodes

for (i = id; i < TOTAL_NUM_DOCS; i += p)
count += check_doc (filename[i], pattern); //Function to check input

//Reduce all the counts to global count on master node
MPI_Reduce (&count, &global_count, 1, MPI_INT, MPI_SUM, 0, 

MPI_COMM_WORLD);

if (id==0) printf (“The pattern appears %d times\n", global_count);

MPI_Finalize();
return 0;

}
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Running the MPI Code

% mpirun -np 3 wordcount

The pattern appears 456 times

Number of Nodes
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Another Example: Matrix-Vector Multiply

 Multiply a x*y Matrix with vector sized x

2 1 3 4 0

5 -1 2 -2 4

0 3 4 1 2

2 3 1 -3 0

3

1

4

0

3

19

34

25

13

x =

 Each row of the resultant vector can be computed 
independently and in parallel

A B C
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Decomposition

 Let’s give each row and the entire vector to each machine

0

1

2

3

Master 
Node

2 1 3 4 0

3

1

4

0

3

5 -1 2 -2 4

3

1

4

0

3

0 3 4 1 2

3

1

4

0

3

2 3 1 -3 0

3

1

4

0

3
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Aggregating the result

 Each node then passes it’s result to the master node for 
the final vector

0

1

2

3

Master 
Node19

34

25

13

34

25

13

Final Result
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Program Pseudocode

Get my node rank (id)
Get total number of nodes (p)

If (master) send every node one row  and vector
If (worker) Collect row array A and vector B

For (i=0; I < row_size; i++)
C[i] += A[i] * B[i]

If (worker) Send results to Master
If (master) Collect results from each worker, output result
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MPI Code (m_v_multiply.c)
#include <stdio.h>
#include <mpi.h>
#include "../MyMPI.h“

int main (int argc, char *argv[]) 
{   

double **a;       /* First factor, a matrix */
double *b;        /* Second factor, a vector */
double *c_block;  /* Partial product vector */
double *c;        /* Replicated product vector */
double *storage;  /* Matrix elements stored here */
int i, j;     /* Loop indices */
int id;       /* Process ID number */
int m;        /* Rows in matrix */
int n;        /* Columns in matrix */
int nprime;   /* Elements in vector */
int p;        /* Number of processes */
int rows;     /* Number of rows on this process */   
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MPI Code (m_v_multiply.c)
/* Initialize MPI Environment */
MPI_Init (&argc, &argv);   
MPI_Comm_rank (MPI_COMM_WORLD, &id);
MPI_Comm_size (MPI_COMM_WORLD, &p);

/*Read and Distribute Matrix and Vector from Command Line*/
read_row_striped_matrix (argv[1], (void *) &a,(void *) &storage,    

MPI_DOUBLE, &m, &n, MPI_COMM_WORLD);
rows = BLOCK_SIZE(id,p,m);
read_replicated_vector (argv[2], (void *) &b, MPI_DOUBLE, &nprime,  

MPI_COMM_WORLD);   

/*Read and Distribute Matrix and Vector from Command Line*/
c_block = (double *) malloc (rows * sizeof(double));
c = (double *) malloc (n * sizeof(double));

for (i = 0; i < rows; i++) /*Compute Local Product*/ 
{

c_block[i] = 0.0;      
for (j = 0; j < n; j++)         

c_block[i] += a[i][j] * b[j];   
}
/*Collect Results*/
replicate_block_vector (c_block, n, (void *) c, MPI_DOUBLE, 

MPI_COMM_WORLD);   
MPI_Finalize();      

}
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Closing Notes

 Link between Distributed Systems and Cloud Computing
 Lessons Learned in Building Large-Scale, Distributed 

Systems for Cloud
 Similar Goals, Requirements

 Cloud Computing combines the best of these technologies 
and techniques
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Do you … ?
Tim

e

Now I appreciate 
why Cloud 

Computing is 
important

Now I 
know what 

Cloud 
Computing 

is

Distributed 
Systems 

End of week two
Parallel 

Processing 

End of week five
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