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Lecture Motivation

m Quick Refresher on Files and File Systems

m Understand the importance of File Systems in handling
data

m Introduce Distributed File Systems
m Discuss HDFS
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Files

m Filein OS? tlle length
Creation timestamp
" Permanent Storage e (e
= Sharing information since files can be Write timestamp
created with one application and shared Attribute timestamp

Reference count
Owner

with many applications
= Files have data and attributes

File type
Access control list

Figure 2: File attribute record structure

Couloris,Dollimore and Kindberg Distributed Systems: Concepts & Design Edn. 4, Pearson Education 2005
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File System

m The OS interface to disk storage
m Subsystem of the OS

m Provides an abstraction to storage device and makes it easy to
store, organize, name, share, protect and retrieve computer files

m A typical layered module structure for the implementation of a
Non-DFS in a typical OS:

Directory module: relates file names to file IDs

File module: relates file IDs to particular files

Access control module: checks permission for operation requested
File access module: reads or writes file data or attributes

Block module: accesses and allocates disk blocks
Device module: disk I/O and buffering

Couloris,Dollimore and Kindberg Distributed Systems: Concepts & Design Edn. 4, Pearson Education 2005
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Great! Now how do you Share Files?

m 1980s: Sneakernet
Copy files onto floppy disks, physically carry

it to another computer and copy it again.
= We still do it today with Flash Disks!

m Networks emerged
= Started using FTP

@ = Save time of physical movement of storage devices.

¢ " Two problems:

— Needed to copy files twice: from source computer onto a
server, and from the server onto the destination computer.

— Users had to know the physical addresses of all computers
involved in the file sharing.
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History of Sharing Computer Files

m Networks emerged (contd.)

= Computer companies tried to solve the problems
with FTP, new systems with new features were
developed.

= Not as a replacement for the older file
systems but represented an additional layer
between the disk, FS and user processes.

= Example:

Sun Microsystem's Network File System (NFS).
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File Sharing (1/7)

Qriginal file

Single machine J

Process Hn
o A
/ lalblc
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/| Process \
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/ |
7 |
1. Wite "c" 2. Read gets "abc"

m On asingle processor,
when a write is followed
by a read, the read data is
the accurate written one
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m On adistributed system with caching, the read
data might not be the most up to date.
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File Sharing (2/7)

" How to deal with shared files on a distributed system with caches?
There are 4 ways!

Method Comment

UNIX semantics Every operation on a file is instantly visible to all processes

Session semantics | No changes are visible to other processes until the file is closed

Immutable files No updates are possible; simplifies sharing and replication

Transaction All changes occur atomically
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File Sharing (3/7)

m UNIX semantics

= Every file operation is instantly visible to all users. So, any read
following a write returns the correct value.

= A total global order is enforced on all file operations to return the
most recent value.

= |n a single physical machines, a shared |-Node is used to
achieve this control.

= Files data is a shared data structure among all users.

" |n Distributed file server, same behavior needs to be done!
= Instant update cause performance implications.
= Fine grain operations increase overhead.
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File Sharing (4/7)

m UNIX semantics

= Distributed UNIX semantics
= Could use centralized server that can serialize all file operations.
= Poor performance under many use patterns.

= Performance constraints require that the clients cache file blocks, but
the system must keep the cached blocks consistent to maintain UNIX
semantics.

= Writes invalidate cached blocks.

= Read operations on local copies “after” the write according to a
global clock happened “before” the write.

— Serializable operations in transaction systems.
— Global virtual clock orders on all writes, not reads.
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File Sharing (5/7)

m Session semantics

= Changes become visible when the session is finished.

= When modified by multiple parties, the final file state is determined by
who closes last.

= When two processes modify the same file, session semantics would
produce one process’ changes or the other but not both.

= Many processes keep files open for long periods.

" This approach is different from most of programmers experience, so must
be used with caution.

-;@) Good for process whose file modification is transaction oriented (connect,
modify, disconnect).

~ Bad for series of open operations.
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File Sharing (6/7)

m Immutable Files

" No updates are possible.
= Both file sharing and replication are simplified.

= No way to open a file for writing or appending.
= Only directory entries may be modified.
" To replace or change an old file, a new one must be created.

" Fine for many applications. Howeuver, it’s different enough that it must be
approached with caution.

= Design Principle:

= Many applications of distribution involve porting existing non-
distributed code along with its assumptions.
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File Sharing (7/7)

m Atomic transactions

= Changes are all or nothing
= Begin-Transaction
= End-Transaction

= System responsible for enforcing serialization.

" Ensuring that concurrent transactions produce results consistent with
some serial execution.

= Transaction systems commonly track the read/write component
operations.

= Familiar aid of atomicity provided by transaction model to implementers
of distributed systems.

= Commit and rollback both very useful in simplifying implementation.
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Distributed File System
m File System for a physically
distributed set of files.

m Usually within an network of
computers.

m Allows clients to access files on
remote hosts as if the client is
actually working on the host.

m Enables maintaining data
consistency.

m Acts as a common data store for
distributed applications.

15-319 Introduction to Cloud Computing
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Simple Example of a DFS

m Dropbox
= Keeps your files synced across many computers.
" |s a “transparent” DFS implementation.
" Transparent to the OS (Windows, Mac, Linux)
= Keeps track of consistency, backups etc.
= ACL is not mature — personal experiences were near catastrophic.
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DFS Requirements

m Most attributes inherited from Distributed Systems

m Transparency
" Location
® Access
®  Scaling
" Naming
= Replication
m Concurrency
® Concurrent updates
" Locking

Fault-Tolerance
Scalability
Heterogeneity
Consistency

Efficiency

Location Independence
m Security
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Network File System (NFS)

m An industry standard by Sun Microsystems for file sharing on local networks
since the 1980s.

m An open and popular standard with clear and simple interfaces.

m Supports many of the DFS design requirements (EX: transparency,
heterogeneity, efficiency).

m Limited achievement of: concurrency, replication, consistency and security.

Client computer Server computer

Application Application
program  program

LUNIX
system calls
UMNIX kerng=—
UNIX kerne=={ " Virtual file system | | Virtual file system |
ote ) [}
LI NFS I & NFS LLIX
ile i ile
system client \Fe senver system
protocol
http:/fwww.cs.uwaterloo.ca/~iaib/cs454/notes/5. FileSystems. pdf
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More on NFS

m Supports directory and file access via remote procedure
calls (RPCs)

m All UNIX system calls supported other than open & close

m Open and close are intentionally not supported
" For aread, client sends lookup message to server
= Server looks up file and returns handle
= Unlike open, lookup does not copy info in internal system tables
= Subsequently, read contains file handle, offset and num bytes
= Each message is self-contained

m Pros: server is stateless, i.e. no state about open files
m Cons: Locking is difficult, no concurrency control
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NFS Tradeoffs

m NFS Volume is Managed by a Single Server
" Higher Load on a Single Server
= Simplified Coherency Protocols

m Not Fault Tolerant
= Scalability is a real issue
®= Multiple Points of Failure in large (1000+) systems
= App Bugs, OS
= Hardware / Power Failure
= Network Connectivity

m Monitor, fault tolerance, auto-recovery essential in Cloud
Computing.
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Andrew File System (AFS)

m Under development
since 1983 at CMU.

m Andrew is highly
scalable; the system is
targeted to span over
5000 workstations.

m NFS compatible.

Workstations Servers
User Venus=_
program Vice
I UNIXkemel |
=
| LINEX kernel |
TpUser i Network = "=':- E
program
UNIX kernel |
=3
Vice
BUser Venus=—
program | UNIX kernel |
[ UNIXkemel |
= = =
=

http://www.cs.uwaterloo.ca/~iaib/cs454/notes/5. FileSystems. pdf

m Distinguishes between client machines and dedicated server
machines. Servers and clients are interconnected by an

inter-net of LANS.
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AFS Details

m Based on the upload/download model
= (Clients download and cache files
= Server keeps track of clients that cache the file
= Clients upload files at end of session

m Whole file caching is central idea behind AFS
= Later amended to block operations
= Simple, effective

m AFS servers are stateful

= Keep track of clients that have cached files
= Recall files that have been modified
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Google File system (GFS)

m Google has had issues with existing file systems on their
huge distributed systems

m They created a new file system that matched well with
MapReduce (also by Google)

m They wanted to have :
" The ability to detect, tolerate, recover, from failures automatically
= Large Files, >= 100MB in size each
= lLarge, streaming reads (each read being >= 1MB in size)
= Large sequential writes that append
= Concurrent appends by multiple clients

= Atomicity for appends without synchronization overhead among
clients
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Architecture of GFS

m Single master to coordinate access, keep metadata

= Simple centralized management
" Fixed size chunks (64MB)

m Many Chunk Servers (100 — 1000s)

" Files stored as chunks
= Each chunk identified by 64-bit unique id

m Reliability through replication
= Each chunk replicated across 3+ chunk servers
m Many clients accessing same and different files stored on
same cluster

" No data caching
= Little benefit due to large data sets, streaming reads
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GFS Architecture (Continued)

Apphcation| . . TR macter o e
PP (file name. chunk index) | OFS master = [Too/bar
T . . “ - W
GFS client File namespace chunk Zefl
ichunk handle, ;
chunk locations) S
o ’ Legend:
- Dhata messages
. L
[nstructions to chunkserver Control messages
Chunkserver state
(chunk handle, byvte rangey 1 1 - "1y
GEFS chunkserver G FS chunkserver
hunk data . ) . ~ T
N Linux file system Linux file system
5l Ale
Figure from “The Google File System,”
Ghemawat et. al., SOSP 2003
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Master and Chunk Server Responsibilities

m Master Node m Chunk Servers
= Holds all metadata = Simple
= Namespace = Stores Chunks as files

= Current locations of chunks
= All in RAM for fast access

" Manages chunk leases to chunk
servers

®  Chunks are 64MB size

®  Chunks on local disk using
standard filesystem

" Read write requests specify

= Garbage collects orphaned
& P chunk handle and byte range

chunks
" Migrates chunks between chunk " Chunks replicated on
servers configurable chunk servers

= Polls chunk servers at startup

® Use heartbeat messages to
monitor servers

15-319 Introduction to Cloud Computing Spring 2010 © (’ijﬁ:."’l"‘s\l“'lgw"h
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The Design Tradeoff

m Can have small number of Large Files
" | ess Metadata, the GFS Masternode can handle it
= Fewer Chunk Requests to Masternode
= Best for Streaming Reads

m Large number of Small Files
= 1 chunk per file
= Waste of Space
= Pressure on Masternode to index all the files

: : .9d; yl=andy
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How about Clients who need Data?

m GFS clients
= Consult master for metadata
= Access data from chunk servers

®= No caching at clients and chunk servers due to the frequent case of
streaming

m A client typically asks for multiple chunk locations in a
single request

m The master also predicatively provide chunk locations
immediately following those requested

15-319 Introduction to Cloud Computing Spring 2010 © (’ijf:if"l”‘s\;“’j'lgw‘“h
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Differences in the GFS API

m Not POSIX compliant
= Cannot mount an HDFS system in Unix directly, no Unix file semantics
= An APl over your existing File System (EXT3, RiserFS etc.)

m API Operations

" QOpen, Close, Create and delete
= Read and write
= Record append

= Snapshot (Quickly create a copy of the file)

GFS API

Storage Medium

- : . i 0 yala g glminaly
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Replication in GFS

m The Data Chunks on the Chunk Servers are replicated
(Typically 3 times)

m If a Chunk Server Fails
= Master notices missing heartbeats

= Master decrements count of replicas for all chunks on dead chunk
server

= Master replicates chunks missing replicas in background
" Highest priority of chunks missing greatest number of replicas

: : .9d; yl=andy
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Consistency in GFS

m Changes to Namespace are atomic
" Done by Single Master Server
= Master uses logs to define global total order of namespace-
changing operations
m Data changes are more complicated

= Consistent: File regions all see as same, regardless of replicas they
read from

= Defined: after data mutation, file region is consistent and all clients
see that entire mutation

. . 3 9d . il=aaaly
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Mutation in GFS

m Mutation = write or append

" must be done for all replicas
m Goal: minimize master involvement

m Lease mechanism:

= Master picks one replica as primary; gives it a “lease”
for mutations

" Primary defines a serial order of mutations
= All replicas follow this order

m Data flow decoupled from control flow

15-319 Introduction to Cloud Computing Spring 2010 © (’ijﬁ:."’l"‘s\l“'lgw"h
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Hadoop Distributed File System (HDFS)

m So GFS is super cool. | want it now!
= Not possible, It’s Google’s proprietary technology. [ ® (g
" Good thing they published the technology though.
" Now you can get the next best thing: HDFS

m HDFS is open-source GFS under Apache
= Same design goals
= Similar architecture, APl and interfaces
" Compliments Hadoop MapReduce

: : .9d; yl=andy
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HDFS Design

m Files stored as blocks
" Much larger size than most filesystems (default is 64MB)

m Reliability through replication

= Each block replicated across 3+ DataNodes

m Single master (NameNode) coordinates access, metadata

= Simple centralized management

m No data caching

= Little benefit due to large data sets, streaming reads

m Familiar interface, but customize the API
= Simplify the problem; focus on distributed apps
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HDFS Architecture |

Client computer
— HDFS NameNode
HDFS-Aware Application
POSIX API HDFS API T f
L > HDFS DataNode
\ )/
Regular VFS with local and Separate HDFS view
Specific drivers... Network stack -
LY PR CTE IR
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HDFS Architecture Il

HDFS Architecture

- | Metadata (Name, replicas, ...) ‘
Metadata ops '[ Namenode J_"L /homeffool/data, 3, ...

. Block ops

Rﬁ‘,éd Datanodes ~_  Datanodes
| |
* = ]
= Replication - ? - L
| H'“-. Bloc
- ll'lll v, p - | ‘-l-'
Y I"'.. . - Y
Rack 1 \Vvite - Rack 2
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How to Talk to HDFS

m Hadoop and HDFS are written in Java
" Primary Interface to HDFS is in Java
= QOther Interfaces do exist: C, FUSE,WebDAV, HTTP, FTP (buggy)
m InJava, we use the F1leSystemand
DistributedFileSystem classes:
= Best practice is to use the URI class and hdfs://
" Try out the example code in Chapter 3 of Tom White’s Hadoop Book.
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Anatomy of an HDFS File Read

m A Client Program requests for data from the NameNode
using the filename

m The NameNode returns the block locations on the
DataNodes

m The Client then accesses each block Individually

. 2: et block leations
1 open Distributed 10 e
— N anetiode
dlient _:;r?.‘il]
D FaData namenode
dient JUM .
i *.

dient node
4 read I-.-""-.._I_i:ru.ul
v Tl
datanode datanode datanode
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Data Locality and “Rack Awareness”

m Bandwidth between two nodes in a Datacenter depends
primarily on the “distance” between the two nodes

m The Distance can be calculated as follows:
= Suppose node nlis on rackrlin data center d1 (d1/r1/nl)
= distance( /d1/r1/nl, /d1/rl/nl) = 0 (Procceses in the same node)
= distance( /d1/r1/nl, /d1/r1/n2) = 2 (Nodes in the same rack)
= distance( /d1/rl/nl, /d1/r2/n3) = 4 (Nodes across racks)
= distance( /d1/r1/nl, /d2/r3/n4 ) = 6 (Nodes across Different DCs)

m If configured properly with this information, Hadoop will
optimize file reads and writes and sends jobs closest to
the data.

. . A=d g, J..;.S\:\_.J l=aaaly
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Rack Awareness in HDFS

a2i

RHERILS

]
(000008
O

rl rl rack
d1 d2 data center
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Anatomy of an HDFS File Write

m The client issues a write request to the NameNode

m The client then writes individual blocks to the DataNodes
and the DataNode pipeline the data for replication.

m After a block is written, the Data node sends an ACK
m After the File is written, the Client informs the NameNode

- . “'ea“,
HOFS - 7t mmplete NameNode
‘imt "-:url_'llrll_ " ""“"--""'“"'""'"-“'-"“'
R
& e T FSDat.aam namenode
dient JUM N—
dient node i
4 write packet 5 ack pa kit
{
Pipeline of Databode Datatbode Datalode
datanodes T 5
datanode datanode datanode
4
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Replica Placement

m Tradeoff between Reliability and Bandwidth
= Replicas on Same node will be faster but unreliable
= Replicas across nodes will be reliable but slower

m Hadoop’s Replica Placement Strategy
= First replica is placed on the same node as client process (or
chosen at random if client is outside the cluster)
= Second replica is placed on different rack from the first (off-rack)
" Third replica is placed on a different node on the same rack as the
first.

. i 8yl S0yl sanaly,
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Replica Placement

=
o
o
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Coherency in HDFS

m After a File is Created, it will be visible in the FS
namespace

m However writes to HDFS are not guaranteed to be visible,
even after a flush();
Path p = new Path("'p™);
OutputStream out = fs.create(p);

out.write('content".getBytes("'UTF-8"));
out.flush();

assertThat(fs.getFileStatus(p).getLen(), i1s(0L));
m File contents are visible only after the stream has been

closed in HDFS. Also any file block that is currently being
written in HDFS will not be visible

m MUST sync

. . A 0d yglea g0 g l=aaaly
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Current Shortcomings of HDFS

m Write appends not stable and currently disabled (Hadoop 0.20)
m Coherency Model is an issue for application developers

m Handling of Corrupt Data (Sorry for the recent server
downtime folks! ® )

m No Authentication for HDFS users — You are who you say you
are in HDFS

m Fault Tolerance is still Faulty
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15-319 Introduction to Cloud Computing Spring 2010 © (~m_f:j,_i‘; Mellon Oatar



Applications

m What does it have to do with cloud computing? ‘ T
= Datais at the Heart of Cloud Computing Services
= Need File Systems that can fit the bill for large, scalable hardware

and software

= GFS/HDFS and similar Distributed File Systems are now part and
parcel of Cloud Computing Solutions.

: : i 0 glea Syl aaly.
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