Carnegie Mellon

Introduction to Cloud Computing

Distributed File Systems
15-319, spring 2010
12t Lecture, Feb 18t

Majd F. Sakr

. : § O\, il=aaaly
15-319 Introduction to Cloud Computing Spring 2010 © (’%’Jﬁiﬁfwﬁlm();nm-

=

Carnegie Mellon

Lecture Motivation

m Quick Refresher on Files and File Systems

m Understand the importance of File Systems in handling
data

m Introduce Distributed File Systems
m Discuss HDFS

. . ,J=3 q 4L;.5\)_u l=aaaly
15-319 Introduction to Cloud Computing Spring 2010 © (,m_f:i_fl_ié Nl}m'lnllm()-u-n'-

Carnegie Mellon

Files

m Filein OS? tlle length
Creation timestamp
" Permanent Storage e (e
= Sharing information since files can be Write timestamp
created with one application and shared Attribute timestamp

Reference count
Owner

with many applications
= Files have data and attributes

File type
Access control list

Figure 2: File attribute record structure

Couloris,Dollimore and Kindberg Distributed Systems: Concepts & Design Edn. 4, Pearson Education 2005
. . rl:;s q,L,aS\)_ulE 2aly
15-319 Introduction to Cloud Computing Spring 2010 © (-_“_]S:j,_i‘; “;,'l"llm(hf“.“.

Carnegie Mellon

File System

m The OS interface to disk storage
m Subsystem of the OS

m Provides an abstraction to storage device and makes it easy to
store, organize, name, share, protect and retrieve computer files

m A typical layered module structure for the implementation of a
Non-DFS in a typical OS:

Directory module: relates file names to file IDs

File module: relates file IDs to particular files

Access control module: checks permission for operation requested
File access module: reads or writes file data or attributes

Block module: accesses and allocates disk blocks
Device module: disk I/O and buffering

Couloris,Dollimore and Kindberg Distributed Systems: Concepts & Design Edn. 4, Pearson Education 2005

. . A 0d yglea g0 g l=aaaly
15-319 Introduction to Cloud Computing Spring 2010 © (‘-1:-5:2-3-i¢; Mellon Oatar
Jarnegie] Jal:

Carnegie Mellon

Great! Now how do you Share Files?

m 1980s: Sneakernet
Copy files onto floppy disks, physically carry

it to another computer and copy it again.
= We still do it today with Flash Disks!

m Networks emerged
= Started using FTP

@ = Save time of physical movement of storage devices.

¢ " Two problems:

— Needed to copy files twice: from source computer onto a
server, and from the server onto the destination computer.

— Users had to know the physical addresses of all computers
involved in the file sharing.

_ : 9 . iyl=analy
15-319 Introduction to Cloud Computing Spring 2010 © ﬁ]ﬁit\sl\iﬁ:m()mm-

=

Carnegie Mellon

History of Sharing Computer Files

m Networks emerged (contd.)

= Computer companies tried to solve the problems
with FTP, new systems with new features were
developed.

= Not as a replacement for the older file
systems but represented an additional layer
between the disk, FS and user processes.

= Example:

Sun Microsystem's Network File System (NFS).

_ : 9 . iyl=analy
15-319 Introduction to Cloud Computing Spring 2010 © ﬁ]ﬁit\sl\iﬁ:m()mm-

=

File Sharing (1/7)

Qriginal file

Single machine J

Process Hn
o A
/ lalblc

/ 4]
/| Process \

/ B \
/ |
7 |
1. Wite "c" 2. Read gets "abc"

m On asingle processor,
when a write is followed
by a read, the read data is
the accurate written one

15-319 Introduction to Cloud Computing

Client machine #1

Frocess 4 N

B /
/

Carnegie Mellon

5 Wiite"e* 1. Read "ab"

File server /

"

",

3. Read gets"ab"

Client machine #2

b«
Process
B

http:/iwww.nmc.teiher.gr/activities/MASTERS/JOINT/Material/Vall/DSC_2.pdf

A

|

m On adistributed system with caching, the read
data might not be the most up to date.

Spring 2010 © Carnegie Mellon Qatar

File Sharing (2/7)

" How to deal with shared files on a distributed system with caches?
There are 4 ways!

Method Comment

UNIX semantics Every operation on a file is instantly visible to all processes

Session semantics | No changes are visible to other processes until the file is closed

Immutable files No updates are possible; simplifies sharing and replication

Transaction All changes occur atomically

: : .9d; yl=andy
15-319 Introduction to Cloud Computing Spring 2010 © ﬁﬁiﬁfwﬁ:m”mm_

=

File Sharing (3/7)

m UNIX semantics

= Every file operation is instantly visible to all users. So, any read
following a write returns the correct value.

= A total global order is enforced on all file operations to return the
most recent value.

= |n a single physical machines, a shared |-Node is used to
achieve this control.

= Files data is a shared data structure among all users.

" |n Distributed file server, same behavior needs to be done!
= Instant update cause performance implications.
= Fine grain operations increase overhead.

: : .9d; yl=andy
15-319 Introduction to Cloud Computing Spring 2010 © ﬁiﬁtwﬁﬁ:m“m“i_

=

File Sharing (4/7)

m UNIX semantics

= Distributed UNIX semantics
= Could use centralized server that can serialize all file operations.
= Poor performance under many use patterns.

= Performance constraints require that the clients cache file blocks, but
the system must keep the cached blocks consistent to maintain UNIX
semantics.

= Writes invalidate cached blocks.

= Read operations on local copies “after” the write according to a
global clock happened “before” the write.

— Serializable operations in transaction systems.
— Global virtual clock orders on all writes, not reads.

: : .9d; yl=andy
15-319 Introduction to Cloud Computing Spring 2010 © ﬁiﬁtwﬁﬂ:m“mm_

=

File Sharing (5/7)

m Session semantics

= Changes become visible when the session is finished.

= When modified by multiple parties, the final file state is determined by
who closes last.

= When two processes modify the same file, session semantics would
produce one process’ changes or the other but not both.

= Many processes keep files open for long periods.

" This approach is different from most of programmers experience, so must
be used with caution.

-;@) Good for process whose file modification is transaction oriented (connect,
modify, disconnect).

~ Bad for series of open operations.

_ _ i gd. igl=aaaly
15-319 Introduction to Cloud Computing Spring 2010 © ﬁiﬁi‘wﬁﬁ:m“_“."‘.

File Sharing (6/7)

m Immutable Files

" No updates are possible.
= Both file sharing and replication are simplified.

= No way to open a file for writing or appending.
= Only directory entries may be modified.
" To replace or change an old file, a new one must be created.

" Fine for many applications. Howeuver, it’s different enough that it must be
approached with caution.

= Design Principle:

= Many applications of distribution involve porting existing non-
distributed code along with its assumptions.

: : .9d; yl=andy
15-319 Introduction to Cloud Computing Spring 2010 © (’Jf;ﬁif]twﬁlm(hm_

=

File Sharing (7/7)

m Atomic transactions

= Changes are all or nothing
= Begin-Transaction
= End-Transaction

= System responsible for enforcing serialization.

" Ensuring that concurrent transactions produce results consistent with
some serial execution.

= Transaction systems commonly track the read/write component
operations.

= Familiar aid of atomicity provided by transaction model to implementers
of distributed systems.

= Commit and rollback both very useful in simplifying implementation.

15-319 Introduction to Cloud Computing Spring 2010 © (’ijf::_"’l"‘s\l“'lgw"l‘x

oie Mellon Qatar

Distributed File System
m File System for a physically
distributed set of files.

m Usually within an network of
computers.

m Allows clients to access files on
remote hosts as if the client is
actually working on the host.

m Enables maintaining data
consistency.

m Acts as a common data store for
distributed applications.

15-319 Introduction to Cloud Computing

Carnegie Mellon

i 9d ol 0 iglminaly

Spring 2010 © Carnegie Mellon Qatar

Simple Example of a DFS

m Dropbox
= Keeps your files synced across many computers.
" |s a “transparent” DFS implementation.
" Transparent to the OS (Windows, Mac, Linux)
= Keeps track of consistency, backups etc.
= ACL is not mature — personal experiences were near catastrophic.

_ _ A gd yglia g0 l=inaly
15-319 Introduction to Cloud Computing Spring 2010 © (‘arﬁ:’ifit;i\"léi‘llhll(nfll‘ll-'

Carnegie Mellon

DFS Requirements

m Most attributes inherited from Distributed Systems

m Transparency
" Location
® Access
® Scaling
" Naming
= Replication
m Concurrency
® Concurrent updates
" Locking

Fault-Tolerance
Scalability
Heterogeneity
Consistency

Efficiency

Location Independence
m Security

_ _ A gd yglia g0 l=inaly
15-319 Introduction to Cloud Computing Spring 2010 © (‘arf:::rié Mél"llm("f“_“'_

Carnegie Mellon

Network File System (NFS)

m An industry standard by Sun Microsystems for file sharing on local networks
since the 1980s.

m An open and popular standard with clear and simple interfaces.

m Supports many of the DFS design requirements (EX: transparency,
heterogeneity, efficiency).

m Limited achievement of: concurrency, replication, consistency and security.

Client computer Server computer

Application Application
program program

LUNIX
system calls
UMNIX kerng=—
UNIX kerne=={ " Virtual file system | | Virtual file system |
ote) [}
LI NFS I & NFS LLIX
ile i ile
system client \Fe senver system
protocol
http:/fwww.cs.uwaterloo.ca/~iaib/cs454/notes/5. FileSystems. pdf
15-319 Introduction to Cloud Computing 17 o 84yl sl ataly

Spring 2010 © Carnegie Mellon Qatar

Carnegie Mellon

More on NFS

m Supports directory and file access via remote procedure
calls (RPCs)

m All UNIX system calls supported other than open & close

m Open and close are intentionally not supported
" For aread, client sends lookup message to server
= Server looks up file and returns handle
= Unlike open, lookup does not copy info in internal system tables
= Subsequently, read contains file handle, offset and num bytes
= Each message is self-contained

m Pros: server is stateless, i.e. no state about open files
m Cons: Locking is difficult, no concurrency control

_ : 9 . iyl=analy
15-319 Introduction to Cloud Computing Spring 2010 © E‘f’;]ﬁf]t\ﬁﬁ:m“mm_

=

NFS Tradeoffs

m NFS Volume is Managed by a Single Server
" Higher Load on a Single Server
= Simplified Coherency Protocols

m Not Fault Tolerant
= Scalability is a real issue
®= Multiple Points of Failure in large (1000+) systems
= App Bugs, OS
= Hardware / Power Failure
= Network Connectivity

m Monitor, fault tolerance, auto-recovery essential in Cloud
Computing.

: : .9d; yl=andy
15-319 Introduction to Cloud Computing Spring 2010 © ﬁiﬁtwﬁﬂ:m“mm_

=

Carnegie Mellon

Andrew File System (AFS)

m Under development
since 1983 at CMU.

m Andrew is highly
scalable; the system is
targeted to span over
5000 workstations.

m NFS compatible.

Workstations Servers
User Venus=_
program Vice
I UNIXkemel |
=
| LINEX kernel |
TpUser i Network = "=':- E
program
UNIX kernel |
=3
Vice
BUser Venus=—
program | UNIX kernel |
[UNIXkemel |
= = =
=

http://www.cs.uwaterloo.ca/~iaib/cs454/notes/5. FileSystems. pdf

m Distinguishes between client machines and dedicated server
machines. Servers and clients are interconnected by an

inter-net of LANS.

15-319 Introduction to Cloud Computing

Spring 2010 © Carnegie Mellon Qatar

=

AFS Details

m Based on the upload/download model
= (Clients download and cache files
= Server keeps track of clients that cache the file
= Clients upload files at end of session

m Whole file caching is central idea behind AFS
= Later amended to block operations
= Simple, effective

m AFS servers are stateful

= Keep track of clients that have cached files
= Recall files that have been modified

: : .9d; yl=andy
15-319 Introduction to Cloud Computing Spring 2010 © ﬁiﬁtwﬁﬁ:m“m“i_

=

Google File system (GFS)

m Google has had issues with existing file systems on their
huge distributed systems

m They created a new file system that matched well with
MapReduce (also by Google)

m They wanted to have :
" The ability to detect, tolerate, recover, from failures automatically
= Large Files, >= 100MB in size each
= lLarge, streaming reads (each read being >= 1MB in size)
= Large sequential writes that append
= Concurrent appends by multiple clients

= Atomicity for appends without synchronization overhead among
clients

_ : 9 . iyl=analy
15-319 Introduction to Cloud Computing Spring 2010 © ﬁﬁ.ﬁ#\ﬁﬁ:m(mhn_

=

Architecture of GFS

m Single master to coordinate access, keep metadata

= Simple centralized management
" Fixed size chunks (64MB)

m Many Chunk Servers (100 — 1000s)

" Files stored as chunks
= Each chunk identified by 64-bit unique id

m Reliability through replication
= Each chunk replicated across 3+ chunk servers
m Many clients accessing same and different files stored on
same cluster

" No data caching
= Little benefit due to large data sets, streaming reads

: : 9 . iyl=analy
15-319 Introduction to Cloud Computing Spring 2010 © #”(};ﬁiﬁt}ﬁﬁ:m(m“r

=

Carnegie Mellon

GFS Architecture (Continued)

Apphcation| . . TR macter o e
PP (file name. chunk index) | OFS master = [Too/bar
T . . “ - W
GFS client File namespace chunk Zefl
ichunk handle, ;
chunk locations) S
o ’ Legend:
- Dhata messages
. L
[nstructions to chunkserver Control messages
Chunkserver state
(chunk handle, byvte rangey 1 1 - "1y
GEFS chunkserver G FS chunkserver
hunk data .) . ~ T
N Linux file system Linux file system
5l Ale
Figure from “The Google File System,”
Ghemawat et. al., SOSP 2003
= 0y glea g0 yl=nnaly

15-319 Introduction to Cloud Computing Spring 2010 © ¢,y negieMellon Qatar

Carnegie Mellon

Master and Chunk Server Responsibilities

m Master Node m Chunk Servers
= Holds all metadata = Simple
= Namespace = Stores Chunks as files

= Current locations of chunks
= All in RAM for fast access

" Manages chunk leases to chunk
servers

® Chunks are 64MB size

® Chunks on local disk using
standard filesystem

" Read write requests specify

= Garbage collects orphaned
& P chunk handle and byte range

chunks
" Migrates chunks between chunk " Chunks replicated on
servers configurable chunk servers

= Polls chunk servers at startup

® Use heartbeat messages to
monitor servers

15-319 Introduction to Cloud Computing Spring 2010 © (’ijﬁ:."’l"‘s\l“'lgw"h

oie Mellon Qatar

The Design Tradeoff

m Can have small number of Large Files
" | ess Metadata, the GFS Masternode can handle it
= Fewer Chunk Requests to Masternode
= Best for Streaming Reads

m Large number of Small Files
= 1 chunk per file
= Waste of Space
= Pressure on Masternode to index all the files

: : .9d; yl=andy
15-319 Introduction to Cloud Computing Spring 2010 © (’Jf;ﬁif]twﬁlm(hm_

=

How about Clients who need Data?

m GFS clients
= Consult master for metadata
= Access data from chunk servers

®= No caching at clients and chunk servers due to the frequent case of
streaming

m A client typically asks for multiple chunk locations in a
single request

m The master also predicatively provide chunk locations
immediately following those requested

15-319 Introduction to Cloud Computing Spring 2010 © (’ijf:if"l”‘s\;“’j'lgw‘“h

oie Mellon Qatar

Carnegie Mellon

Differences in the GFS API

m Not POSIX compliant
= Cannot mount an HDFS system in Unix directly, no Unix file semantics
= An APl over your existing File System (EXT3, RiserFS etc.)

m API Operations

" QOpen, Close, Create and delete
= Read and write
= Record append

= Snapshot (Quickly create a copy of the file)

GFS API

Storage Medium

- : . i 0 yala g glminaly
-}.?_319 Introduction to Cloud (f(-)mﬂj_tmg-ﬂ_ - Spring 2010 © Carnegie Mellon Qatar

Replication in GFS

m The Data Chunks on the Chunk Servers are replicated
(Typically 3 times)

m If a Chunk Server Fails
= Master notices missing heartbeats

= Master decrements count of replicas for all chunks on dead chunk
server

= Master replicates chunks missing replicas in background
" Highest priority of chunks missing greatest number of replicas

: : .9d; yl=andy
15-319 Introduction to Cloud Computing Spring 2010 © ﬁiﬁtwﬁﬁ:m“m“i_

=

Consistency in GFS

m Changes to Namespace are atomic
" Done by Single Master Server
= Master uses logs to define global total order of namespace-
changing operations
m Data changes are more complicated

= Consistent: File regions all see as same, regardless of replicas they
read from

= Defined: after data mutation, file region is consistent and all clients
see that entire mutation

. . 3 9d . il=aaaly
15-319 Introduction to Cloud Computing Spring 2010 © #’#ﬁ.ﬁt‘ﬁﬁ:m(mm_

=

Mutation in GFS

m Mutation = write or append

" must be done for all replicas
m Goal: minimize master involvement

m Lease mechanism:

= Master picks one replica as primary; gives it a “lease”
for mutations

" Primary defines a serial order of mutations
= All replicas follow this order

m Data flow decoupled from control flow

15-319 Introduction to Cloud Computing Spring 2010 © (’ijﬁ:."’l"‘s\l“'lgw"h

oie Mellon Qatar

Hadoop Distributed File System (HDFS)

m So GFS is super cool. | want it now!
= Not possible, It’s Google’s proprietary technology. [® (g
" Good thing they published the technology though.
" Now you can get the next best thing: HDFS

m HDFS is open-source GFS under Apache
= Same design goals
= Similar architecture, APl and interfaces
" Compliments Hadoop MapReduce

: : .9d; yl=andy
15-319 Introduction to Cloud Computing Spring 2010 © ﬁiﬁtwﬁﬂ:m“mm_

=

HDFS Design

m Files stored as blocks
" Much larger size than most filesystems (default is 64MB)

m Reliability through replication

= Each block replicated across 3+ DataNodes

m Single master (NameNode) coordinates access, metadata

= Simple centralized management

m No data caching

= Little benefit due to large data sets, streaming reads

m Familiar interface, but customize the API
= Simplify the problem; focus on distributed apps

: : .9d; yl=andy
15-319 Introduction to Cloud Computing Spring 2010 © ﬁiﬁtwﬁﬂ:m“mm_

=

Carnegie Mellon

HDFS Architecture |

Client computer
— HDFS NameNode
HDFS-Aware Application
POSIX API HDFS API T f
L > HDFS DataNode
\)/
Regular VFS with local and Separate HDFS view
Specific drivers... Network stack -
LY PR CTE IR

15-319 Introduction to Cloud Computing Spring 2010 © EarnesrieMellanOatar

HDFS Architecture Il

HDFS Architecture

- | Metadata (Name, replicas, ...) ‘
Metadata ops '[Namenode J_"L /homeffool/data, 3, ...

. Block ops

Rﬁ‘,éd Datanodes ~_ Datanodes
| |
* =]
= Replication - ? - L
| H'“-. Bloc
- ll'lll v, p - | ‘-l-'
Y I"'.. . - Y
Rack 1 \Vvite - Rack 2

. . : = 9 s slea S0yl aaly
2—31&2 Introduction to Cloud gczmﬁl-ng- . Spring 2010 © Carnegie Mellon Qatar

How to Talk to HDFS

m Hadoop and HDFS are written in Java
" Primary Interface to HDFS is in Java
= QOther Interfaces do exist: C, FUSE,WebDAV, HTTP, FTP (buggy)
m InJava, we use the F1leSystemand
DistributedFileSystem classes:
= Best practice is to use the URI class and hdfs://
" Try out the example code in Chapter 3 of Tom White’s Hadoop Book.

: : .9d; yl=andy
15-319 Introduction to Cloud Computing Spring 2010 © ﬁiﬁtwﬁﬁ:m“m“i_

=

Carnegie Mellon

Anatomy of an HDFS File Read

m A Client Program requests for data from the NameNode
using the filename

m The NameNode returns the block locations on the
DataNodes

m The Client then accesses each block Individually

. 2: et block leations
1 open Distributed 10 e
— N anetiode
dlient _:;r?.‘il]
D FaData namenode
dient JUM .
i *.

dient node
4 read I-.-""-.._I_i:ru.ul
v Tl
datanode datanode datanode
15-319 Introduction to Cloud Computing Spring 2010 © éf_ﬁ:_"’l“m'bw‘“l‘*

oie Mellon Qatar

Carnegie Mellon

Data Locality and “Rack Awareness”

m Bandwidth between two nodes in a Datacenter depends
primarily on the “distance” between the two nodes

m The Distance can be calculated as follows:
= Suppose node nlis on rackrlin data center d1 (d1/r1/nl)
= distance(/d1/r1/nl, /d1/rl/nl) = 0 (Procceses in the same node)
= distance(/d1/r1/nl, /d1/r1/n2) = 2 (Nodes in the same rack)
= distance(/d1/rl/nl, /d1/r2/n3) = 4 (Nodes across racks)
= distance(/d1/r1/nl, /d2/r3/n4) = 6 (Nodes across Different DCs)

m If configured properly with this information, Hadoop will
optimize file reads and writes and sends jobs closest to
the data.

. . A=d g, J..;.S\:_.J l=aaaly
15-319 Introduction to Cloud Computing Spring 2010 © (~m_15:.f,_i‘; Mellon Oatar

Carnegie Mellon

Rack Awareness in HDFS

a2i

RHERILS

]
(000008
O

rl rl rack
d1 d2 data center
: : 4 9d iyl=iasaly
15-319 Introduction to Cloud Computing Spring 2010 © éf'ﬁfr#\ﬁlm(fn-ﬁ'

Anatomy of an HDFS File Write

m The client issues a write request to the NameNode

m The client then writes individual blocks to the DataNodes
and the DataNode pipeline the data for replication.

m After a block is written, the Data node sends an ACK
m After the File is written, the Client informs the NameNode

- . “'ea“,
HOFS - 7t mmplete NameNode
‘imt "-:url_'llrll_ " ""“"--""'“"'""'"-“'-"“'
R
& e T FSDat.aam namenode
dient JUM N—
dient node i
4 write packet 5 ack pa kit
{
Pipeline of Databode Datatbode Datalode
datanodes T 5
datanode datanode datanode
4
_ _ _ 44, il=aaaly
15-319 Introduction to Cloud Computing Spring 2010 © éf'ﬁfrt\ﬁ:m()-n-ﬁ'
b oie Ve Jat:

Carnegie Mellon

Replica Placement

m Tradeoff between Reliability and Bandwidth
= Replicas on Same node will be faster but unreliable
= Replicas across nodes will be reliable but slower

m Hadoop’s Replica Placement Strategy
= First replica is placed on the same node as client process (or
chosen at random if client is outside the cluster)
= Second replica is placed on different rack from the first (off-rack)
" Third replica is placed on a different node on the same rack as the
first.

. i 8yl S0yl sanaly,
Spring 2010 © Carnegie Mellon Qatar

=

15-319 Introduction to Cloud Computing

Carnegie Mellon

Replica Placement

=
o
o
-]

ML
ﬂ

rack

data center

15-319 Introduction to Cloud Computing. Spring 2010 © Carnegie Mellon Qatar

i

Carnegie Mellon

Coherency in HDFS

m After a File is Created, it will be visible in the FS
namespace

m However writes to HDFS are not guaranteed to be visible,
even after a flush();
Path p = new Path("'p™);
OutputStream out = fs.create(p);

out.write('content".getBytes("'UTF-8"));
out.flush();

assertThat(fs.getFileStatus(p).getLen(), i1s(0L));
m File contents are visible only after the stream has been

closed in HDFS. Also any file block that is currently being
written in HDFS will not be visible

m MUST sync

. . A 0d yglea g0 g l=aaaly
15-319 Introduction to Cloud Computing Spring 2010 © (-_“_]S:j,_i‘; Mellon Oatar

Carnegie Mellon

Current Shortcomings of HDFS

m Write appends not stable and currently disabled (Hadoop 0.20)
m Coherency Model is an issue for application developers

m Handling of Corrupt Data (Sorry for the recent server
downtime folks! ®)

m No Authentication for HDFS users — You are who you say you
are in HDFS

m Fault Tolerance is still Faulty

. . A= 9 yalea g0 d l=aaaly
15-319 Introduction to Cloud Computing Spring 2010 © (~m_f:j,_i‘; Mellon Oatar

Applications

m What does it have to do with cloud computing? ‘ T
= Datais at the Heart of Cloud Computing Services
= Need File Systems that can fit the bill for large, scalable hardware

and software

= GFS/HDFS and similar Distributed File Systems are now part and
parcel of Cloud Computing Solutions.

: : i 0 glea Syl aaly.
15-319 Introduction to Cloud Computing Spring 2010 © (‘arifriq; w'léi'llynn(n)y-ul-li-

Carnegie Mellon

References

WWW.SCS.ryerson.ca/~aabhari/DS-CH8.ppt

www.cs.umd.edu/class/fall2002/.../Distributed File Systems.pdf
web.cs.wpi.edu/.../\Week%203%20--%20Distributed%20File%20Systems.ppt
http://www.slideworld.com/slideshows.aspx/Chapter-17-DistributedFile-Systems-ppt-2113201
www.cs.uga.edu/~laks/ADCS-Materials/DFS.ppt
http://www.cs.uwaterloo.ca/~iaib/cs454/notes/5.FileSystems.pdf
http://www.cs.chalmers.se/~tsigas/Courses/DCDSeminar/Files/afs_report.pdf
http://www.nmc.teiher.gr/activities/ MASTERS/JOINT/Material/VVall/DSC 2.pdf
http://www.cs.umd.edu/~hcma/818q/

https://vpn.gatar.cmu.edu/+CSCO+00756767633A2F2F636265676E792E6E707A2E626574++/
citation.cfm?id=98169

http://www.cs.rice.edu/~qgw4314/lectures/dfs.ppt

m George Coulouris, JeanDollimore and Tim Kindberg. Distributed Systems:Concepts and
Design(Edition3).Addison-Wesley2001 http://www.cdk3.net/

m AndrewS.Tanenbaum,Maartenvan Steen. Distributed Systems:Principles and Paradigms.
Prentice-Hall2002. http://www.cs.vu.nl/~ast/books/ds1/

m P. K.Sinha, P.K. "Distributed Operating Systems, Concepts and Design", IEEE Press, 1993

m Couloris,Dollimore and Kindberg Distributed Systems: Concepts & Design Edn. 4, Pearson
Education 2005

_ _ A gd yglia g0 l=inaly
15-319 Introduction to Cloud Computing Spring 2010 © (‘al‘!lhl’fl‘it;l\"lélnllhll()'ll'll-'

http://www.scs.ryerson.ca/~aabhari/DS-CH8.ppt
http://www.cs.umd.edu/class/fall2002/.../Distributed_File_Systems.pdf
http://www.slideworld.com/slideshows.aspx/Chapter-17-DistributedFile-Systems-ppt-2113201
http://www.cs.uga.edu/~laks/ADCS-Materials/DFS.ppt
http://www.cs.uwaterloo.ca/~iaib/cs454/notes/5.FileSystems.pdf
http://www.cs.chalmers.se/~tsigas/Courses/DCDSeminar/Files/afs_report.pdf
http://www.nmc.teiher.gr/activities/MASTERS/JOINT/Material/Vall/DSC_2.pdf
http://www.cs.umd.edu/~hcma/818g/
https://vpn.qatar.cmu.edu/+CSCO+00756767633A2F2F636265676E792E6E707A2E626574++/citation.cfm?id=98169
https://vpn.qatar.cmu.edu/+CSCO+00756767633A2F2F636265676E792E6E707A2E626574++/citation.cfm?id=98169
http://www.cs.rice.edu/~gw4314/lectures/dfs.ppt

	Distributed File Systems�15-319, spring 2010�12th Lecture, Feb 18th
	Lecture Motivation
	Files
	File System
	Great! Now how do you Share Files?
	History of Sharing Computer Files
	File Sharing (1/7)
	File Sharing (2/7)
	File Sharing (3/7)
	File Sharing (4/7)
	File Sharing (5/7)
	File Sharing (6/7)
	File Sharing (7/7)
	Distributed File System
	Simple Example of a DFS
	DFS Requirements
	Network File System (NFS)
	More on NFS
	NFS Tradeoffs
	Andrew File System (AFS)
	AFS Details
	 File System (GFS)
	Architecture of GFS
	GFS Architecture (Continued)
	Master and Chunk Server Responsibilities
	The Design Tradeoff
	How about Clients who need Data?
	Differences in the GFS API
	Replication in GFS
	Consistency in GFS
	Mutation in GFS
	Hadoop Distributed File System (HDFS)
	HDFS Design
	HDFS Architecture I
	HDFS Architecture II
	How to Talk to HDFS
	Anatomy of an HDFS File Read
	Data Locality and “Rack Awareness”
	Rack Awareness in HDFS
	Anatomy of an HDFS File Write
	Replica Placement
	Replica Placement
	Coherency in HDFS
	Current Shortcomings of HDFS
	Applications
	References

