Carnegie Mellon

Introduction to Cloud Computing

Functional Programming and MapReduce
15-319, spring 2010
13t Lecture, March 9t

Iliano Cervesato

. : § O\, il=aaaly
15-319 Introduction to Cloud Computing Spring 2010 © (’%’Jﬁiﬁfwﬁlm();nm-

=



Carnegie Mellon

Lecture Goals

m Introduction to functional programming

m Understand how MapReduce was designed by borrowing
elements from functional programming and deploy them
in a distributed setting

m Introduction to MapReduce program model
= Advantages and why it makes sense

2 : i 8yl S0yl sanaly,
Spring 2010 © Carnegie Mellon Qatar

=

15-319 Introduction to Cloud Computing



Lecture Outline

m Functional programming
" |ntroduction
" Map
= Fold
= Examples
= Exploiting parallelism in map

m MapReduce

_ _ 44, il=aaaly
15-319 Introduction to Cloud Computing Spring 2010 © ’(J;f_;‘:f,";f:wﬁ:m(‘fm_

iy
e



Carnegie Mellon

Functional Programming

m Not to be confused with imperative / procedural
programming
® Think of mathematical functions and A Calculus

= Computation is treated as evaluation of expressions and functions
on lists containing data

= Apply functions on data to transform them

* { But professor, you
said yesterday that
x was equal to 2!

. . A g 4L;.5\)_u l=aaaly
15-319 Introduction to Cloud Computing Spring 2010 © (‘arﬁi:ric; Vellon Oatar



Carnegie Mellon

Functional Programming Characteristics

m Data structures are persistent
" Functional operations do not modify data structures

= New data structures are created when an operation is
performed

= QOriginal data still exists in unmodified form
= Data flows are implicit in the program design
" No state

m Functions are treated as first-class entities in FP
= Can be passed to and returned by functions
® Can be constructed dynamically during run-time
® Can be a part of data structures

: : .9d; yl=andy
15-319 Introduction to Cloud Computing Spring 2010 © ﬁiﬁtwﬁﬂ:m“mm_

=



A Simple Example - Factorial

m Consider the factorial in mathematics
m Mathematical definition

1 if n=20
nl = L vn € N.
n((n—1)) ifn=>0

: : i 0 glea Syl aaly.
15-319 Introduction to Cloud Computing Spring 2010 © (‘arifriq; w'léi'llynn(n)y-ul-li-



Carnegie Mellon

C Program to Evaluate Factorial

m An Iterative program to evaluate factorial
m We describe the “steps” needed to obtain the result
m Butis it really equivalent to factorial?

int factorial (int n) {

f =0: .
’ 1 fn=20
while(n>0) { nl = o vn € N.
f = fn: n((n—1)1) ifn>0
n--;
}
return f;

m Observation: The program changes the state of variables f and n
during execution

m You describe the steps necessary to perform the computation, going
to the level of the machine

15-319 Introduction to Cloud Computing Spring 2010 © (’Jf’(l;f:i.”L"m'IE”‘“h

oie Mellon Qatar



Factorial Function in ML

m In Standard ML

fun factorial (n:int): iInt = ,
ifn=0 o= d 1 S e
then 1 n((n—1)) ifn>0

else n * factorial(n-1)

m Function definition mirrors the mathematical definition
m No concept of state, N does not get modified

m Functional programming allows you to describe
computation at the level of the problem, not at the level
of the machine

. : q g , il=aaay
15-319 Introduction to Cloud Computing Spring 2010 © ﬁiﬁt\ﬁﬁ:m(m“n_

=



Carnegie Mellon

A Functional Programming Example in C

m Functional programming is not an attribute of the
language but a state of mind

= We can rewrite the factorial program recursively in C as follows:

int factorial (int n)

{
iIf (n == 0) return 1;
else
return n * factorial (n-1);

}

m Cdoes support some aspects of functional programming
but emphasizes imperative programming

_ : 9 . iyl=analy
15-319 Introduction to Cloud Computing Spring 2010 © ﬁﬁ.ﬁ#\ﬁﬁ:m(mhn_

=



Carnegie Mellon

Examples of Functional Languages

m Lots of examples:
® LISP — One of the oldest, but outdated
= Scheme
= ML, CAML etc.
= JavaScript, Python, Ruby
m Functional programming compilers/interpreters have to
convert high level constructs to low-level binary
instructions

m Myth: Functional programming languages are inefficient

= By and large a thing of the past,

" Modern compilers generate code that is close to imperative
programming languages

_ : 9 . iyl=analy
15-319 Introduction to Cloud Computing Spring 2010 © ﬁﬁ.ﬁ#\ﬁﬁ:m(mhn_

=



Carnegie Mellon

Lists in Functional Programming

m A Listis a collection of elements in FP (usually of the same
type)
m Example:
= val L1 = [0,2,4,6,8]
val L2 = 0::[2,4,6,8]

® > (cons) isthe constructor operatorin ML, N1l represents the empty
list

: : .9d; yl=andy
15-319 Introduction to Cloud Computing Spring 2010 © (’Jf;ﬁif]twﬁlm(hm_

=



Carnegie Mellon

Operations on Lists - |

m Let’s define a double operation on a list as follows:

fun double nil =0
|double [x::L] = 2 * x :-: double L

m This function can be computed as follows:

[0.2,4,6, 8]

This is a common type of operation in

l l l l l FP and can be expressed as a
map operation

[O, 4,8, 12, 8]

m Many functions work this way and can be expressed also
as a map operation
m These functions operate on each list element

independently.
®= They can be parallelized

Spring 2010 © Carnegie Mellon Qatar

=

15-319 Introduction to Cloud Computing



The Map Operation

m A Map function is used to apply an operation to every
element of a list

= fun map nil = nil
| map f(x::L) = (F x) -: map of L

= fun twice X = 2 * X

= fun double L = map twice L

: : .9d; yl=andy
15-319 Introduction to Cloud Computing Spring 2010 © (’Jf;ﬁif]twﬁlm(hm_

=



Operations on Lists - |l

m Let’s define a sum operation on a list as follows:

fun sum nil = 0
[sum [x::L] = x + sum L

m This function can be computed as follows:

[0.2,4,6,8]I[]

)+ 0
l .8 This is a common type of operation in
FP and can be expressed as a
fold operation

m The computation happens from left to right and takes n
steps

= But since the sum operation is associative, it doesn't have to be so.
This does not work for non-associate functions (such as subtract)

15-319 Introduction to Cloud Computing Spring 2010 © Carnegie Mellon Oatar

=



Carnegie Mellon

Parallelism in List Operations

m If an operation is associative, if can be evaluated as

follows:
NN N
\ /
\

m Here the operation is done in O(log n) time.

: : =i Suiyl=analy
15-319 Introduction to Cloud Computing Spring 2010 © ¢ f::_ ‘ﬂ"f\h}":m” —
e



The Fold Operation

m Fold operation is used to combine elements of a list
= Two functions: foldl and foldr for ‘fold left’ and ‘fold right’

® For associative functions, they produce the same result.
fun foldr £ b nil =D
| foldr £ b (x::1) = f(x, foldr £ b I)

= This function is equivalent to:
foldr f b [x1,x2,...,xn] = f(x1, F(x2, ..., F(xn,b)...)

. . 3 9d . il=aaaly
15-319 Introduction to Cloud Computing Spring 2010 © #’#ﬁ.ﬁt‘ﬁﬁ:m(mm_

=



Implicit Parallelism in List Functions

m In a purely functional setting, calls to f on each element of
a list are independent

® Can be parallelized.

m If order of application of fto elements in list is
associative, we can reorder or parallelize execution of f

m This is the “secret” that L
MapReduce exploits

fold / reduce

L

result

_ _ i gy glea g l=inaaly
15-319 Introduction to Cloud Computing Spring 2010 © (‘ar?{::iriéwléillm(ninl-li-
T I 1] A ‘B i v ‘l L



	Functional Programming and MapReduce�15-319, spring 2010�13th Lecture, March 9th 
	Lecture Goals
	Lecture Outline
	Functional Programming
	Functional Programming Characteristics
	A Simple Example - Factorial 
	C Program to Evaluate Factorial
	Factorial Function in ML
	A Functional Programming Example in C
	 Examples of Functional Languages
	Lists in Functional Programming
	Operations on Lists - I
	The Map Operation
	Operations on Lists - II
	Parallelism in List Operations
	The Fold Operation
	Implicit Parallelism in List Functions

