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Lecture Goals

Transition to MapReduce from Functional Programming
Understand the origins of MapReduce
Explore the Hadoop API and Interface

One hands-on program to dive into Hadoop!
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Lecture Outline

m Functional Programming Review and MapReduce

m Hadoop
= Components
= MapReduce
" Programming Model
" Map and Reduce Functions
" Terminology — Jobs and Tasks
m Java Implementations and Classes
" Mapper and Reducer Classes
=  Writing a MapReduce Driver
" |nput, Output and Other handler classes
m Simple Program (Hands-On)

m Details of Hadoop
= Handling Input and Output
= Job Execution and Data Flow
" Hadoop Optimizations
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Functional Programming Review

m Functional operations do not modify data structures:
They always create new ones

m Original data still exists in unmodified form
m Data flows are implicit in program design
m Order of operations does not matter
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Functional Programming

m Process lists of data very frequently

" |terators: operators over lists
m Map
m Fold

m Map operation can be assigned to each element of a list
independently

m If the operation performed in a fold operation is
commutative, it can be parallelized
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Implicit Parallelism in Functional Programming

m In a purely functional setting, elements of a list being
computed by map cannot see the effects of the
computations on other elements

m If order of application of f to elements in list is
commutative (and associative), we can reorder or
parallelize execution of f

m This is the “secret” that MapReduce exploits
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Enter MapReduce

m Functional programming on top of distributed processing

m Motivated by need to process large amounts of data using
hundreds (or thousands) of processor nodes

m Datais central to the computation, place the program
closest to the data it will be working on.

m Provide a clean abstraction to programmers similar to
functional programming

m The Interface deals with all the messy details
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MapReduce History

m Developed by Google to simplify their data processing jobs
on large data
= Details emerged from two published papers:

= James Dean, Sanjay Ghemawat, MapReduce : Simplified Data
Processing on Large Clusters, Proceedings of OSDI/ ‘04, 2004

= Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung, Google
File System, Proceedings of Symposium of Operating Systems
Principles, ACM SIGOPS, 2004
m Since Google’s implementation is proprietary and not
available to public, an Apache Project called Hadoop
emerged as an open source implementation

® Primary Contributors: Yahoo!, Facebook
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Motivating Example

m Processing Web Data on a Single Machine

20+ billion web pages x 20KB = 400+ terabytes
One computer can read 30-35 MB/sec from disk
~ four months to read the web

~1,000 hard drives just to store the web

Even more to do something with the data

m Takes too long on a single machine, but with 1000
machines?

15-319 Introduction to Cloud Computing

< 3 hours to perform on 1000 machines
But how long to program? What about the overheads?
= Communication, coordination, recovery from machine failure
= Status Reporting, Debugging, Optimization, Locality
= Reinventing the Wheel: This has to be done for every program!

Spring 2010 © Carnegie Mellon Qatar

=



Carnegie Mellon

MapReduce Features

m Automatic Parallelization and Distribution of Work
m Fault-Tolerant

m Status and Monitoring Tools
m Clean Abstraction for Programmers
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Typical Problem Solved by MapReduce

1. Read a lot of Data

2. MAP: extract something you need from each record
3. Shuffle and Sort

a. REDUCE: aggregate, summarize, filter or transform
s.  Write the results

Outline stays the same,
Map and Reduce change to fit the Problem

Model seems restrictive but it is Turing Complete.
Multiple maps and reduces needed to solve a complex
problem.
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Programming Model

m Fundamentally similar to Functional Programming

m Users implement interfaces to following two functions:
" map (in _key, in value) ->
(out_key, intermediate_value) list

" reduce (out key, intermediate value list) ->
out value list
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A Typical MapReduce Program - |

Input Data

| MAPL

Shuffle and Sort (barrier)
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A Typical MapReduce Program - |l

Input key*value Input key*value
pairs pairs
Y Y
map map
Data store 1 Data store n
(kéy 1, (key 2, (key 3, (kéy 1, (key 2, (key 3,
vaIIes...) ValIes...) valuT...) valules...) ValTs...) VElues...)
== Barrier == : Aggregates intermediate values by output key |
key 1, key 2, key 3,
intermediate intermediate intermediate
values values values
A\ Y Y
reduce reduce reduce
final key 1 final key 2 final key 3
values values values
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Parallelism

m Map functions run in parallel, create intermediate values
from each input data set

" The programmer must specify a proper input split (chunk) between
mappers to enable parallelism

m Reduce functions also run in parallel, each will work on
different output keys

" Number of reducers is a key parameter which determines map-
reduce performance

m All values are processed independently

= Reduce phase cannot start until the map phase is completely
finished
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Data Locality

m Master program creates tasks based on the location of
the data; tries to send map() tasks to the same machine
or at least same rack

m Map() task inputs are divided into 64 MB blocks (same as
HDFS/GFS) or at file boundaries.

m Minimizes communication at the network level
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Fault Tolerance

m Master keeps track of progress of each task and worker
nodes

= |f a node fails, it re-executes the completed as well as in-progress
map tasks on other nodes that are alive

" |t also executes in-progress reduce tasks.

m If particular input key/value pairs keep crashing
= Master blacklists them and skips them from re-execution

m Tolerate small failures, allow the job to run in best-effort
basis

" For large datasets containing potentially millions of records, we
don’t want to stop computation for a few records not processing
correctly

® User can set the failure tolerance level

17 . i 9d ol 0 iglminaly
Spring 2010 © Carnegie Mellon Qatar

=

15-319 Introduction to Cloud Computing



Optimizations

m Reduce tasks will start only after all the map operations
are complete - bottleneck

= Use a combiner (a mini-reducer on the output of a map) to reduce
the output and the amount of communication during sort and

shuffle

= Speculative execution — New feature in Hadoop, enables multiple
task attempts to run in parallel and use the results of the first one

to finish
m MapReduce programs are bound by the slowest element
— the last mapper to finish or the time taken for the
Reduce operations to finish.
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Time to Dive into Hadoop!

e ——

e —

Now | can play with
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What is Hadoop?

m Open Source Implementation of Google’s Distributed
Computing Projects

m Includes open source versions of MapReduce, BigTable,
GFS etc.

Supported by the Apache Foundation
Primary Contributors — Yahoo!, Facebook
Work in Progress — lots of features are unstable

Used by Yahoo to run a 2000+ node distributed cluster,
and many other web companies as well.
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Quick Look at Hadoop Components

“Google Calls It” Hadoop Description
Equivalent
MapReduce MapReduce Java Implementation of the
MapReduce Programming
Model
GFS HDFS Distributed File System
Sawzall Pig Data Flow Language
Hive Distributed Data Warehouse
and Query Engine
BigTable HBase Distributed Database
Chubby ZooKeeper Distributed Co-ordination
Service
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Hadoop MapReduce

m The “Meat” of Hadoop. Implementation of Google’s
MapReduce Programming Model

m Express complex tasks in the form of Maps and Reduces
to enable large-scale processing of data

m Functional programming meets distributed computing
using batch processing of data

m Benefits:
= Automatic Parallelization and Distribution of Data
= Fault Tolerance
= Status and Monitoring Tools

" Clean Programming Abstraction to help focus on the solving the
problem
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MapReduce Programming Model

m Functional Programming concepts of map and fold
m Users Implement Map and Reduce Functions

" map (in key, in value) -> (out key,
intermediate value) list

" reduce (out key, intermediate value) list ->
out value list
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The Map Function

m Records from the data source (lines out of files, rows of a
database, etc) are fed into the map function as key*value
pairs: e.g., (filename, line).

m map() produces (emits) one or more intermediate values
along with an output key from the input.
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Example — UpperCase Mapper

let map(k,v) =
emit (k.toUpper () ,v.toUpper())

(\\abcdll , \\efghll) — (\\ABCD// , \\EFGH//)
("CMUq”, “hadoop”)— (“"CMUQ”, “HADOOP")

(\\foo// , \\barll)_)(\\FOO// , \\BAR//)
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Example - Filter Mapper

let map(k, v) =
if (v%2==0) then emit(k, wWv)

(“foo”, 7)— (nothing)

(“test”, 10)—(“test”,10)
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The Reduce Function

m After the map phase is over, all the intermediate values for
a given output key are combined together into a list

m reduce() combines those intermediate values into one or
more final values for that same output key

T B
H O
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Example — Sum Reducer

let reduce(k, vals) =

{

sum = 0
foreach int v in vals:
sum += v

emit(k, sum)

}

(“‘A”, [42, 100, 312])—(“A”, 454)

(“B”/ [121 6/ _2])_)(“B”I 16)
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Hadoop MapReduce Terminology

m Job

= Execution of a “complete” program (mapper and reducer) across
an input data set

m Task

= Execution of a single mapper or reducer on a slice of data (task in
progress)

m Task Attempt

= A particular instance of an attempt to execute a task on a machine
or node
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Example of Terminology

m Wordcount on 20 files: One Job

m The Job implies 20 map tasks for each file plus a few
reducer tasks

m There will be at least 20+ task attempts total. More task
attempts if a node crashes, etc.
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MapReduce Java Package Structure

m org.apache.hadoop. *
" mapred - Legacy MapReduce API (upto 0.19)
" mapreduce — New MapReduce API (0.20+)
= conf -Job Configuration Utilities
" jo - Input/Output formats
= fs —File System Handlers
" util - Utilities for hadoop
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The Mapper Java Class

m To write your own mapper, you extend the MapReduceBase Class, and
override the map () function in the Mapper Class, inside
org.apache.mapred

public class NewMapper extends MapReduceBase implements Mapper

{

//User Defined Class Variables and Functions

public void map (WritableComparable key, Writable wvalues,

OutputCollector output, Reporter reporter) throws IOException

//Map Function Goes Here

output.collect (key,value) ;
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Input/Output Datatypes

m Writable Class

= Hadoop type for writing data as a byte stream (Serialization)

=" IntWritable, Text etc

= All values must be Writable

® You can create your own custom writable for your own input format.
m WritableComparable Class

® Subclass of Writable

= Required for sorting and shuffling for reducers

= All keys must be type WriteableComparable

Java Primitive | Writeable Java Type Writeable
Implementation Implementation

boolean booleanWritable String Text

byte ByteWritable Bytes BytesWritable

int IntWritable

float FloatWritable

long LongWritable
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The Reducer Java Class

m To write your own reducer, you extend the

MapReduceBase Class, and override the reduce ()
function in the Reducer Class.

public class ExampleReducer extends MapReduceBase implements Reducer

{

public void reduce (WritableComparable key, Iterator values,

OutputCollector output, Reporter reporter)
throws IOException

{

while (values.hasNext())

{
// process value

}

}
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The Reducer Java Class Continued...

m The reducer class is executed for every key emitted from
the mapper, we use the Iterator class to iterate through
the values of each key

m You can perform the required reduction operation on the
values for each key and emit the key,value pairs as
necessary
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The OutputCollector and Reporter

Classes

m The OutputCollector Class is used to handle output
key-value pairs emitted by mappers and reducers
" output.collect (k,v)

m The Reporter class is used to update counters and

status messages you see onscreen when hadoop
executes.

m The functionality of both classes have now been merged
in Hadoop 0.20 using context objects
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Putting it all together in the Driver Class

m Once you have your mappers and reducers set, you can
write a driver class

m You configure a JobConf object with the following
information
" |nput/Output File formats
" |nput/Output Key-Value Formats
= Mapper and Reducer Classes
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public class Example ({
public static void main(String[] args)
{
JobClient client = new JobClient() ;

JobConf conf = new JobConf (Example.class);

conf.setOutputKeyClass (Text.class) ;
conf.setOutputValueClass (IntWritable.class) ;
conf.setInputPath (new Path("src"));
conf.setOutputPath (new Path("out")) ;
conf.setMapperClass (ExampleMapper.class) ;
conf.setReducerClass (ExampleReducer.class) ;
client.setConf (conf) ;
try {

JobClient.runJdob (conf) ;

} catch (Exception e) ({

e.printStackTrace() ;

}
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A Simple Program (Hands-On)

m Lets try to write a Hadoop program that counts the
number of even and odd numbers in a list.

m Input: Text File with one integer value per line

m Output: Text File Containing the number of even and
Number of Odd numbers in the Input file

m Mapper
= Read each line, parse for integer and emit(“even/odd”,1);

m Reducer

= Sum up all the values of each key (even/odd)
m That’s It!
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How does a Job Execute in Hadoop?

m MapReduce Job is sent to the
masternode JobTracker

m JobTracker creates the tasks —
.and. S.ends them to the MapReduce job /\‘ k
individual slave node Submited by JobTracker
TaskTrackers AN

m The TaskTracker creates task
instances for each task and
runs them, reports status and iave nod Siave 241 Sge\mde
results back to the JobTracker

TaskTracker TaskTracker TaskTracker

Task instance Task instance Task instance
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Job Configuration in Hadoop

m Via the JobConf Object

" Creates a JobConfigration XML file that will packaged along with
the Hadoop JAR file containing your program

" You specify the Mapper, Reducer, Input and Output Files/Formats
etc.

" There are additional attributes that can be specified, each as XML
attributes in the conf file.
m The Hadoop system uses the job XML file along with other
configuration parameters in the Framework (core-site.xml

etc.)

= Some parameters can be defined as final to make sure they are not
overridden.
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Data Flow from Input to Mappers

Input file Input file
T InputSplit InputSplit InputSplit InputSplit
o
o
L
=
g
_L RecordReader RecordReader RecordReader RecordReader
Mapper Mapper Mapper Mapper
(intermediates) (intermediates) (intermediates) (intermediates)
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Handling Input

m First we must specify an input file type

= Text Files — the basic file type in Hadoop, reads text files and
provides input (key,value) pairs to the map tasks.

= Sequence Files — Binary format to store sets of key/value pairs in
binary form. Supports compression as well.

= Map Files - pairs of sorted input SequenceFiles, one file (data)
contains key/value pairs as records and the other (index)

contains key/location pairs where location is the location of the
key in the file data
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Handling Input

m Input file is split into chunks using an InputSplit
= Default split occurs at 64MB and file boundaries
" You can specify your own InputSplit for your Input Formats
= One Map task for each InputSplit

m Arecord is a (key,value) pair
= Read using the RecordReader class

® You can specify your own RecordReader for your own input
formats

" Each InputFormat provides its own RecordReader
implementation

» LLineRecordReader — Reads a line from a text file

= KeyValueRecordReader — Used by
KeyValueTextInputFormat
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Data Flow from Mappers to Reducers

Mapper

Mapper

Mapper

v

(intermediates)

v

(intermediates)

v
v

v
v

(intermediates)

Mapper

(intermediates)

Partitioner

Partitioner

Partitioner

v
v

Partitioner

N,

(intermediates)

v

(intermediates)

v

v

(intermediates)

Reducer

Reducer

Reducer

15-319 Introduction to Cloud Computing

Spring 2010 © S —

i 9d ol 0 iglminaly

gie Mellon Qatar



Carnegie Mellon

Reducer in Detail

m Reduces a set of intermediate values which share a key to a
smaller set of values

m Shuffle

= Copies the sorted output from each mapper using HTTP across the
network

m Sort
= Sorts reduce inputs by keys
= Shuffle and sort phases occur simultaneously
= Secondary Sort using custom functions

m Reduce
" Framework class Reduce for each key and collection of values
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The Partitioner Class

m Responsible for creating the partitions for the Sort and
Shuffle Phase

= Dictates what each reducer receives from each mapper
= Can be used to create a “Global Order” of keys
= Total partitions is same as number of map tasks

m HashPartitioner used by default

" Uses key.hashCode () to return partition num

m JobConf sets Partitioner implementation
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Handling Output

m Each Reducer writes it’s own output

file
m Uses a RecordWriter that is part of a
OUtPUtFormat ObJECt Reducer Reducer Reducer
" TextOutputFormat — Writes
" ” H . !7
key val\n” strings to output file 5 ¢ ¢ ¢
- SequenceFileOUtPUtFormat - '-E RecordWriter RecordWriter RecordWriter
Uses a binary format to pack (k, v) 2
>
pairs o L L L
. NUllOUtPUtFormat — Discards output file output file output file
output
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Optimizations for a MapReduce Job

m Use a Combiner Function
= Essentially a mini-reducer that runs on a mapper’s output
= Executed locally on each node after a map task
" Helpsin reducing data to be transferred during the shuffle phase

conf.setCombinerClass (ExampleReducer.class) ;
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Conclusions

m Basic overview of Hadoop and MapReduce

m Introduction to the Hadoop framework to get you started
on writing programs and code
m For More Information

"= Tom White : Hadoop : The Defnitive Guide, O’Reilly Press
" Pro Hadoop : Jason Venner
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