
15-319 Introduction to Cloud Computing

Project 2
Large-Scale Data Processing using Hadoop

Assigned Date: January 28th, 2010
Deadline: February 18th, 2010 at 11:59 p.m.

Goals:

1. Write Serial, Threaded and Hadoop Java code to process large amounts of data
2. Understand parallelization and its limits in various programming models
3. Get an appreciation of the benefits offered by models like MapReduce in solving

such large-scale problems on distributed hardware

Background:

You are working for a top-secret intelligence organization. We have obtained some
surveillance footage that is to be shared with a rival organization, but the problem is
that a few of our double agents are visible in this footage and we need to conceal
their identity before we send the footage across to our rival. You will have to process
and blur out our agents in each frame of this surveillance video. Time is of the
essence!

The surveillance footage is available in /afs/qatar.cmu.edu/course/15/319/data/
Process the data according to the instructions below. Fortunately our double agents
are seated the whole time so we just need to blur a segment of each image in the
video. After identifying the agents, you may input the static image coordinates to
your program to blur that portion of each image. You may refer to the sample
images included in this dossier for more information.

More information on the recommended APIs and tools that can be used is attached
as an appendix. You are free to use any Java API or external library to complete
this project.

Part I: Decompose the video into individual JPEG frames

1. The input video is located in /afs/qatar.cmu.edu/course/15/319/data

2. Use the ffmpeg program in hadoop.qatar.cmu.edu to decompose the video into
its constituent frames. (Refer to the Appendix for instructions on how to use
ffmpeg)

3. You have been assigned a workspace area in
/afs/qatar.cmu.edu/course/15/319/workspace, use this area to work with these
large files.

Part II: Serial Image Processing Code

1. Write a serial java application that takes each image generated in Part I and blurs
the required area in each frame.

2. Process all frames of the video using your java application on
unix.qatar.cmu.edu and record the duration to complete this task.

3. Deliverable: Submit a processed JPEG frame taken from the video in a folder
(part1) along with a text file containing your code and the duration for your code
to process all the frames as a comment in your program.

Part III: Java Multithreaded Image Processing Code

1. Attempt to speed up your code by writing a multithreaded version of the program
you have written in Part I.

2. You may use the standard Java concurrency libraries to accomplish this task.
3. Run your code on unix.qatar.cmu.edu on all the frames of the video, and record

the time taken to process the entire video.
4. Deliverable: Submit a processed JPEG frame taken from the video in a folder

(part2) along with a text file containing your code and the time taken for your
code to process all the frames as a comment in your program.

Part IV: Hadoop Image Processing Code

1. Read the attached Appendix to learn about Hadoop Sequence Files.
2. Put all the JPEG frames of the video into a TAR archive
3. Use the tar-to-seq.jar application located in

/afs/qatar.cmu.edu/course/15/319/workspace/tools/ to convert your TAR file
into a Hadoop Sequence File and upload it to your cloud.

4. The Hadoop skeleton code (BlurVideoHadoopProject) for loading each file
from this sequence file is located in
/afs/qatar.cmu.edu/course/15/319/workspace/tools/. Import this folder as an
eclipse project into your eclipse workspace.

5. Complete the Hadoop program by filling in the required areas inside the map
function (as marked using comments).

6. Package the code into a Hadoop JAR file (along with your external libraries). Run
your program using the hadoop jar command on your cloud.

7. Use the SeqToFile.jar Hadoop program to unpack your output files into
individual JPEG images (located in
/afs/qatar.cmu.edu/course/15/319/workspace/tools/)

8. Deliverable: Submit a processed JPEG frame taken from the video. Export your
Hadoop project from Eclipse as a Folder. Save the JobTracker HTML page that
shows your Hadoop project running to completion (see sample JobTracker
Output). Place all of these inside a folder called part3.

Submission:

Hand in a project write-up discussing the problem and the three methods used. Make
sure to include a results section along with a performance comparison of the three
methods including a bar graph. Use the 2-column ACM format for this paper
(abstract, problem definition, methods used, results and comparison, conclusions and
references). Creative extensions to the three methods discussed above or a detailed
comparison section will lead to a bonus. Including a face-detection module will lead
to a much greater bonus.

The person with the fastest serial, threaded and Hadoop code (when we run it) will
get a bonus.

Add the write-up and all the deliverable folders from each part into a single zip file
(project2.zip) and place it in:

 /afs/qatar.cmu.edu/course/15/319/handins/username/

This file is to be submitted once and the final timestamp on the server will determine
your submission time.

Grading:
As mentioned in the syllabus, this project is worth 15% of your final grade. You have two
weeks to finish the project.

Project 2 Appendix

General Notes: It is advisable to perform the following tasks from the
/afs/qatar.cmu.edu/course/15/319/workspace/userid folder as we have setup enough
disk quotas for all the users there.

Decomposing a Video into Image Frames

A great utility for breaking a video file down into its individual images is ffmpeg. ffmpeg
is an open-source video encoder/decoder application that can virtually convert to/from
any media format. It can even be used to transcode video for iPods and other devices.

To split a video file (video.mpg) into individual image files (image1.jpg, image2.jpg…)
use the following command:

ffmpeg -i video.mpg image%d.jpg

To create a video file (video.mpg) from individual image files (image1.jpg,
image2.jpg…) use the following command:

ffmpeg -f image2 -i image%d.jpg video.mpg

Refer to http://www.nerdlogger.com/2008/09/ffmpeg-command-line-quickies.html for
more cool stuff that you can do with ffmpeg.

Image Operations in Java

Java AWT Image Libraries allow image handling. You may use the ImageIO class to
open image files and store them as a BufferedImage Object.

A good external library that can be used to blur individual images is the JHlabs imaging
filters. The JAR file containing various imaging filter implementations in Java is
available at http://www.jhlabs.com/ip/filters/Filters.zip

We recommend that you use the following BoxBlur Filter in your application. The
following code fragment opens a file “filename” to perform a blur operation using the
value 10 as the horizontal and vertical radii and iterates the blur operations twice.

BufferedImage img = ImageIO.read(new File(filename));

BufferedImage dest = new BufferedImage(img.getWidth(),
img.getHeight(), img.getType());

BoxBlurFilter BlurOp = new BoxBlurFilter(10,10,2);
dest= BlurOp.filter(img,dest);

http://www.nerdlogger.com/2008/09/ffmpeg-command-line-quickies.html
http://www.jhlabs.com/ip/filters/Filters.zip

ImageIO.write(dest,”jpeg”,output);

Visit http://www.jhlabs.com/ip/blurring.html for more information on these image filters.

Blurring a Portion of an Image

h

w

(x,y)
SUBIMAGE

IMAGE

Blurring a portion of an image is a little trickier. First, you will need the x,y coordinates
of the top left corner of this portion (which we shall call subimage). You will also need
the width w and height h of the subimage. Once you have this information, you can create
a new BufferedImage with the contents of the subimage. Once we blur the subimage, we
then use the Grapchics2D java libraries to overlay this new subimage onto our
destination image. The following code fragment blurs a portion of img and stores it in
dest.

BufferedImage subimg = img.getSubimage(x, y, w, h);

//Perform BlurOperation
BoxBlurFilter BlurOp = new BoxBlurFilter(10,10,2);
subimg= BlurOp.filter(subimg, subimg);

//Overlay the Image on top of original
Graphics2D g=dest.createGraphics();
g.drawImage(img, null, 0, 0);
g.drawImage(subimg,null,x,y);

Refer to the Java Graphics libraries for more information.
http://java.sun.com/docs/books/tutorial/2d/images/

http://www.jhlabs.com/ip/blurring.html
http://java.sun.com/docs/books/tutorial/2d/images/

Multithreaded Programming in Java

Multithreaded programming in Java is accomplished using the Java concurrency library.
It is based on the fork-join threading model. We recommend that you parallelize your
java code by launching several threads from within the program. Each thread could work
on a part of the input to be processed. You will need to write a class that performs the
required processing as a subclass of Runnable in java. The following code skeleton will
be useful in writing your threaded java application:

import java.io.File;
import java.io.IOException;
import java.lang.Thread;

public class SampleThreadedApp
{
 //Class Thread for Blurring a single image read from filename
 private static class SampleThread implements Runnable
 {
 private int i;
 private int start;
 private int num;

 //Constructor to Initalize thread variables
 SampleThread(int value, int s, int n)
 {
 i=value;
 start=s;
 num=n;
 }

 //Every class implementing Runnable must implement the run()
method
 public void run()
 {
 //Get the start point and endpoint for this thread's work

 //Perform Processing
 //...
 //...
 }
 }
 //End SampleThreadedApp

 m//Main Progra
 public static void main(String[] args)
 {

 et total number of Threads //S
 int numThreads = 4;

 //Create thread instances
 Thread t[] = new Thread[numThreads];

//F

 int thread_size=
igure out the number of items each thread must process

total_size/numThreads;

 o all Threads //F rk
 for(int i=0; i<numThreads; i++)
 {
 //Initalize each thread with it's startpoint and end point
 t[i]= new Thread(new BlurThread(i,i*size,size));
 //Fork the Thread!
 t[i].start();
 }

 o all Threads after they have finished processing //J in
 for(int i=0; i<numThreads; i++)
 {
 t[i].join();
 }

 op Clock, Print Timing Messages //St
 long end= System.currentTimeMillis();
 System.out.println("Image Processing Complete!");
 System.out.println("Time Taken: "+ (end-start)/(1000*60) +
 "minutes");
 }

}

A quick Tutorial on multithreaded programming and concurrency in Java is available at
http://java.sun.com/docs/books/tutorial/essential/concurrency/index.html

Hadoop Sequence Files

Hadoop excels in processing large files. The default HDFS block size is about 64 MB.
On the other end of the spectrum, image files that are a few KB in size will not work very
well as input to Hadoop programs. Having a large number of small files also puts
additional strain on the HDFS name node as it has to index all the files in RAM. One way
to get around this is to merge all the images as a single sequence file.

Hadoop has an input file type that is useful in such circumstances called SequenceFile. A
sequence file consists of sequence of key-value pairs. In our case, the key will be the file
name and the value will be the file contents. For the purpose of this project, you may use
a SequenceFile to package the individual JPEG frames of the video. Once you have
processed all the frames in Hadoop, the output will be a bunch of SequenceFiles.

A SequenceFile generator progam (tar-to-seq.jar) is located in
/afs/qatar.cmu.edu/course/15/319/workspace/tools/. You will need to create a TAR of
all the input JPEG files first and then use the program. Use the following commands from
within the directory that contains all the JPEG files:

tar –cf video.tar *.jpg
java -jar tar-to-seq.jar video.tar video.seq

http://java.sun.com/docs/books/tutorial/essential/concurrency/index.html

This file can now be uploaded to your HDFS store and you may use it as the input to your
Hadoop program. Your Hadoop program will produce SequenceFiles as an output as
well.

You may use the provided SeqToFile java program to unpack the output sequence files
and obtain the individual JPEG images.

hadoop jar seqtofile.jar /user/hadoop/blur/out/part-00000

You may repeat this command for each output file that you obtain from Hadoop.

Page 103 in the textbook “Hadoop-The Definitve Guide” discusses SequenceFiles in
detail.

Adding an External JAR Library to your Hadoop Project

In order to run a Hadoop job on your cloud, the Hadoop code is packaged into a JAR and
distributed among the nodes in your cloud. If you are using an external library, it must be
included in the Buildpath and packaged into the final Hadoop JAR file. To do this in
eclipse:

1. Place your external library JAR file(s) into your project folder in directory lib
2. Place another copy of the JAR file(s) outside your project folder
3. In your project properties, add an External JAR to your build path and point it to

the JAR files(s) located outside your project folder.
4. Export your project as a JAR and make sure you include the lib folder which

contain your external JARs

You may not be able to run such code directly from Eclipse. If you face any such trouble,
try running the Hadoop job from command line using the command hadoop jar.

