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15-440: Project 4 

Maximizing Data Locality in Hadoop Clusters via 
Controlled Reduce Task Scheduling 

 
Project posted on: November 19, 2011 

Interim design report: Not required 

Final due date: December 13, 2011 

 

I- Intended Learning Outcomes (ILOs) 

 

This project applies task scheduling in Hadoop MapReduce. The ILOs of the  
project are: 

1. Understand scheduling in distributed systems. 
2. Apply data locality to task scheduling in Hadoop, a widely adopted large-scale 
data-intensive computing platform. 

3. Empirically analyze Hadoop’s performance and network traffic. 
 

II- Project Objectives 

 

The overall goal of this project is to gain a hands-on experience with working on a large 
open-ended research-oriented project using the Hadoop framework. Hadoop is an open 
source implementation of MapReduce and Google File System, and is currently 
enjoying wide popularity. Students will modify the task scheduler of Hadoop, conduct 
several experimental studies, and analyze performance and network traffic results.  
 
The study of scheduling algorithms for distributed computing resources has a long 
history. However, there has been a renewed interest in the subject since the inception 
of MapReduce on the computing stage. The deployment of MapReduce by industry’s 
premier web vendors- Facebook, Google, Amazon and Yahoo!- has, in fact, thrust 
MapReduce to the forefront of data-intensive computing. 
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A main challenge in distributed scheduling is deciding upon the location of data relative 
to the available computational resources. If computations are not placed close to their 
input data, the cluster network can become a bottleneck. When parallel tasks expose 
high cross-cluster network traffic, they start competing for the available network 
bandwidth. As such, optimizing the placement of computation to minimize network traffic 
is typically a primary goal of a data-intensive computing platform. You will have the 
chance to apply data locality to reduce task scheduling in Hadoop MapReduce. The 
project is aimed to provide you with a practical experience on such a realistic distributed 
computing platform as well as with a thorough treatment of an important problem in 
distributed systems (i.e., distributed scheduling). 

 

III- Background on Hadoop  

 

MapReduce is a programming model designed for processing sheer volumes of data 
concurrently by dividing the work into a set of independent tasks. Hadoop is an open 
source implementation of MapReduce. Hadoop MapReduce assumes a master-slave 
architecture. The master is referred to as Job Tracker (JT) and each slave is referred to 
as Task Tracker (TT). In addition to MapReduce, Hadoop employs its own distributed 
file system called Hadoop Distributed File System (HDFS). HDFS is designed to hold 
very large amount of data (TBs or even PBs) and provide high throughput data access. 
Hadoop MapReduce uses HDFS as an underlying storage layer to store application 
data sets. 

In Hadoop MapReduce, an application is represented as a job. A job encompasses 
multiple Map and Reduce tasks. The input data to a job is divided into fixed-size pieces 
denoted as splits. HDFS reliably stores petabytes of data on clusters of commodity 
hardware via replicating splits on different nodes (by default, 3 replicas per split  
in Hadoop).  

To process splits concurrently, each split is assigned a Map task by JT. A Map task 
processes an input split and produces intermediate key-value pairs that are 
partitioned/hashed to either zero (in case of map-only jobs) or many Reducers. A 
Reducer can collect one or many intermediate outputs from one or many feeding 
mappers located at one or many cluster nodes in a process typically known as 
shuffling. Each reducer then merges and processes its inputs from mappers. 
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IV- Hadoop Network Toplogy 

 

 

 

Figure 1: Network Topology in Hadoop (D= data center, R = rack, and N = node) 

 

Hadoop assumes a tree-style network topology similar to the one exhibited in Fig. 1. 
Nodes are spread over different racks encompassed in one or many data centers. A 
salient point is that the bandwidth between two nodes is dependent on their relative 
locations in the network topology. For example, nodes that are on the same rack will 
have higher bandwidth between them as opposed to nodes that are off-rack. Rather 
than measuring bandwidth between two nodes, which might be difficult in practice, 
Hadoop adopts a simple approach via:  

 

1- Representing a node's network position by a string (e.g., N9's location in Fig. 1 is 
represented by /D2/R3/N9). 

2- Representing the bandwidth between two nodes as a measure of distance. 
3- Assuming the distance from a node to its parent is 1. 
4- Calculating the distance between any two nodes by adding up their distances to 
their closest common ancestor (e.g., Distance(/D1/R1/N3, /D2/R4/N10) = 6). 
 

V- Hadoop Heartbeat Protocol 

 

The Job Tracker (JT) and Task Trackers (TTs) communicate over a Hadoop cluster 
network via a periodic heartbeat mechanism. In essence the heartbeat is a mechanism 
for a TT to announce its availability to JT. Besides, the heartbeat is used by TTs to send 
information about their states to JT (e.g., a heartbeat message can indicate whether a 
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TT is ready for a new task to run or not). JT processes the status information sent by 
TTs and responds with instructions to start/stop tasks or jobs, and also reset 
instructions during contingencies. 

 

 

VI- Task Scheduling In Hadoop 

 

 

Hadoop's framework adopts a pull scheduling strategy rather than a push one. That is, 
JT does not push map and reduce tasks to TTs but rather TTs pull them by making 
pertaining requests. Every TT sends a heartbeat message periodically to JT 
encompassing a request for a Map or a Reduce task to run. JT satisfies requests for 
Map tasks via attempting to schedule Mappers in the vicinity of their input splits in 
order to diminish network traffic. Hence, Hadoop MapReduce is said to exploit data 
locality when scheduling Map tasks. On the other hand, JT simply assigns the next yet-
to-run Reduce task to a requesting TT regardless of TT's network location and its 
implied effect on the network traffic. As such, Hadoop MapReduce is said not to 
consider data locality when scheduling reduce tasks. 

 

 

VII- The Problem in Hadoop’s Task Scheduling 

 

 

Let us explain the problem incurred by Hadoop as a result of not considering data 
locality when scheduling Reduce tasks. Fig. 2 demonstrates a simple example of two 
TTs requesting Reduce tasks, R0 and R1, from JT. TTj stands for a Task Tracker node j. 
IORi:TTj stands for an intermediate output IO produced at TTj and hashed to Reducer, Ri. 
JT might receive requests from TT0 and TT3 for Reduce tasks. Here are the two 
possible scenarios. 
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Figure 2: An Example of Two Task Trackers making requests for Reduce tasks in native 
Hadoop (TTj = Task Tracker j, Ri = Reduce i, and IORi:TTj = Intermediate Output produced 

at TTj and hashed to reducer, Ri) 

 

 

Scenario I:  JT replies to TT0 and TT3 with R1 and R0, respectively. This incurs 
shuffling IOR1:TT1 and IOR1:TT3 to TT0 from TT1 and TT3, respectively. In addition, 
IOR0:TT0 and IOR0:TT2 will be shuffled to TT3 from TT0 and TT2, respectively. As a result, 
110MB will be shuffled on the cluster network.  

Scenario II: JT replies to TT0 and TT3 with R0 and R1, respectively. This incurs 
shuffling IOR0:TT2 from TT2 to TT0 and IOR1:TT1 from TT1 to TT3. Consequently, only 
20MB will be shuffled on the cluster network leading to 90MB decrease in network traffic 
as compared to Scenario I.  

Hadoop, in its present design, is incapable of making controlled scheduling decisions 
similar to the one in Scenario II in order to diminish network traffic and improve 
performance.  

 

 

RS RS 

IOR0:TT0 = 40MB  IOR1:TT1 = 10MB  IOR0:TT2 = 10MB  IOR1:TT3 = 50MB  Job Tracker 

1. Request a Reduce Task 
2. Reply with R1 

3. Request a Reduce Task 

4. Reply with R0 

TT0 TT1 TT2 TT3 
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VIII- CoRTS: A New Reduce Task Scheduler for Hadoop 

 

As described in the previous section, the amount of data shuffled depends on where 
Reducers are scheduled. In case a reducer, R, has only one feeding mapper, M, the 
best data locality can be achieved via scheduling R at TT that hosts M. However, R 
typically has multiple feeding mappers which are usually located at multiple nodes. In 
this project, we suggest that good data locality can be achieved via scheduling R at the 
rack that holds the largest input size of R. Hence, the largest amount of data to be fed to 
each Reducer is always kept rack local; decreasing thereby the amount of data shuffled 
off-rack (off-rack traffic is incurred after a map output is shuffled to R from an off-rack 
feeding node). As Hadoop assumes a hierarchal network in which each rack contains a 
local switch and the rack switches are interconnected via a single core switch, 
communication between computers in the same rack becomes cheaper than 
communication between racks. Therefore, we suggest that such a strategy will provide 
Hadoop with better performance. We refer to this strategy as Controlled Reduce Task 
Scheduling (CoRTS) as it exerts some control on network traffic by avoiding shuffling 
large amounts of data across racks. Given the example shown in Fig. 2, if CoRTS is 
applied, Scenario II will be enforced. To this end, Algorithm 1 shows CoRTS. 

 

Algorithm 1: CoRTS Algorithm 

Input: 

RT = set of unscheduled reduce tasks 

TT = the task tracker requesting a reduce task 

Output: A reduce task R Є RT that can be scheduled at TT 

 

1. Initialize a set of potential reducers to schedule at TT, setoffRack = Φ 
2. for every reduce task R Є RT do 
3. LR = the rack that holds the largest input size for R 
4.  
5. if TT Є LR then 
6. return R 
7. else 
8. add R to setoffRack 
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9. end for 
10.  
11. if setoffRack is not empty then 
12. return a random reducer R Є setoffRack 
13. end if 

 

 

IX. Implementation Guidelines 

 

In this project you will implement CoRTS in the Hadoop framework. The Hadoop 
framework includes hundreds of java classes. Hence, we suggest that you focus mainly 
on the following classes to implement CoRTS: 

1) JobTracker: This is the central location class for submitting and tracking 
MapReduce jobs in a distributed environment. It represents the Master node in 
MapReduce. 

2) TaskTracker: This is a process that starts and tracks MapReduce tasks in a 
distributed environment. It contacts the JobTracker for task scheduling and 
reporting results. 

3) JobInProgress: This class maintains all the information for keeping a Job on, 
straight and narrow. It keeps its JobProfile and its latest JobStatus, plus a set of 
tables for doing bookkeeping of its tasks. This class contains the main code for 
the Hadoop task scheduler. 

4) TaskInProgress: This class maintains all the information needed for a task in the 
lifetime of its own Job.  A given TaskInProgress (TIP) contains multiple task ids, 
0 or more of which might be executing at any one time (that is what allows 
speculative execution.) A TIP allocates enough task ids to account for all the 
speculation and failures it will ever have to handle.  Once those are up, the TIP is 
dead. 

5) MapTask: This class represents a map task in MapReduce. 
6) ReduceTask: This class represents a reduce task in MapReduce. 
7) Task: This class is the superclass of classes MapTask and ReduceTask. 
8) TaskStatus: This class describes the current status of a task. 
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In order to simply your job, we have already modified some of the classes and coded 
parts of the algorithm for you. Specifically, 

 

1) We modified the Task and MapTask classes to keep track of reducers per 
mapper (i.e., all reducers that a mapper feeds) as well as the intermediate output 
size produced by every mapper to every consuming reducer. 

2) We modified the TaskStatus class to reflect the new changes on the status of 
the MapTask (as new variables and data structures have been added). This way, 
when a status of a map task is reported to the JobTrakcer (via the heartbeat 
protocol), the new collected information is sent. The new collected information 
(i.e., reducers per mapper and input sizes to reducers from feeding mappers) will 
be needed by CoRTS at JobTracker in order to figure out the rack that holds the 
largest intermediate output for a reducer. 

3)  We also modified the TaskTracker class to update the data structures that keep 
track of reducers per mapper and input sizes to reducers. 

4) We modified the JobTracker class to receive (through the heartbeat mechanism) 
the new collected information at the TaskTracker class.  

5) We modified the JobInProgress class to make the new collected information 
available to the Hadoop scheduler. In particular, we made the following 
modifications to this class: 
 
a. We implemented a function required by CoRTS that computes the 
mappers per each reducer using the information collected at the 
JobTracker class (i.e., the reducers per each mapper). 

b. We implemented a function that returns the racks (represented by their 
integer numbers) that hold the feeding nodes of a given reducer. You 
should utilize this function to implement another function that returns the 
rack that holds the largest intermediate outputs for a given reducer. 

c. We also made many other modifications including, but not limited to, 
functions that allow you to print statistics about the collected and the  
computed data. 

 

Please note that all modifications that have been made to the Hadoop framework are 
tagged by MHH_Code. Hence, you can easily read all added and modified code by 
searching for MHH_Code. 

Now, we assume the following: 

• A Hadoop cluster with two racks, each with two nodes. 
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• The nodes in the cluster have large disks directly attached to them, allowing 
application data to be stored on the same computers on which it will be 
processed. 

 

As such, we also provide you with the following: 

 

- A cluster of 4VMs, each with 1vCPU, 1GB RAM, 20GB storage and Fedora 15 
64-Bit operating system. Two of your VMs go under one rack and the other two 
under another rack. 

- Hadoop 0.20.2 already set up and ready for you with the modified classes being 
integrated and network topology being configured. 

 

 

X. Experimentation and Analysis 

 

Use the sort benchmark available in the Hadoop examples jar file to conduct your 
experimental studies. Please provide the following: 

 

1) A comparison between Hadoop with its native scheduler and Hadoop with 
CoRTS in terms of: 
 
a. Total execution time. 
b. Total amount of data shuffled. 
c. A breakdown of data (i.e., whether local, on-rack or off-rack data) 
consumed by reducers. We have coded this function for you. You can 
collect this data simply by reading the file your_Job_ID_ 

_shuffleStat_Results.txt present under your logs directory. 
 

2) A discussion on: 
 
a. The collected results. 
b. Your experience in modifying the Hadoop framework. 
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c. Your insights concerning distributed scheduling in general and Hadoop 
task scheduling in particular. 

d. How CoRTS scales with deeper network hierarchy. That is, do you think 
CoRTS would extend trivially to networks with more racks and nodes per 
racks? If not, can you suggest an extension to CoRTS (or a completely 
different strategy) so that it can supposedly scale better? (Please note that 
this is merely a conceptual discussion. We do not require you to conduct 
any scalability study for this project) 
 

3) BONUS (25 Points):  An Extension to CoRTS 
 
a. Propose and implement an extension to CoRTS that could account for 
more locality and, consequently, better performance.  

b. Compare your proposal with native Hadoop and CoRTS in terms of: 
i. Total execution time. 
ii. Total amount of data shuffled. 
iii. A breakdown of data. 

c. A discussion on your collected results. 

 

XI. Deliverables 

 

Final Deliverables 

 

As final deliverables, you should submit: 

- An archive containing all your code (only the Hadoop classes that you modified).  
- A minimum of 3-page article (similar to research articles) that presents your 
solution, findings, observations and analysis. 

 

On December 13, we will hold a presentation session (during the normal class time) 
where each team will present (for 25 minute using PowerPoint slides) its work to  
the class. 
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XII. Handing In the Project 

 

Submit your documents and code on AFS directory: 

/afs/qatar.cmu.edu/msakr/www/15440-f11/handin/userid/p4/,  

where ‘userid’  is your andrew user ID. 

 

XIII. Late Policy 

 

• If you hand in on time, there is no penalty (duh!). 
• 0-24 hours late = 25% penalty. 
• 24-48 hours late = 50% penalty. 
• More than 48 hours late = you lose all the points for this project. 

NOTE: You CANNOT use your grace-days quota for project 4. For details about 
grace-days quota, please read the syllabus. 

 

 

XIV. Team Project Policy 

 

This project is a team project. The class will be split into teams of two students. Each 
student can select her/his teammate. Each team should divide the work, including 
coding, testing, analysis, write-up, and presentation, equally among all its members. 
Members of a team might get different grades on the project if after evaluation we 
recognize that the efforts put by members clearly vary. A presentation session will 
be held where each team will present for 25 minute its work to the class. After 
submitting the project, each team has to schedule an appointment with one of the 
course instructors in order to discuss the delivered work. 

 


