
CS15-319 / 15-619
Cloud Computing

Recitation 12

April 8th, 2014

Announcements

• Encounter a general bug:
– Post on Piazza

• Encounter a grading bug:
– Post Privately on Piazza

• Don’t ask if my answer is correct

• Don’t post code on Piazza

• Search before posting

• Post feedback on OLI

Piazza Questions

• STDOUT, STDERR redirection
– ./run.sh 1> result.out 2>error.out

• Question 10
– Some students have longer latency on Q10, this will

be regarded manually.

• Security group

– Both launch instance and HBase master node should
be configured.

DynamoDB vs. HBase

• Data Model
– Key-value vs. Column oriented Key-value

• Proprietary vs. Open source

• Cost
– DynomoDB: Provisioned Throughput Capacity

– HBase: Instance + EMR

• Limitations:
– DynamoDB:

• Item size: 64 KB

• Query result: 1 MB

Project 3, Module 5 Reflections

• When to use DynamoDB:
– Required throughput is determined

• e.g. steady arrival rate

– Easier to implement and scale

– Enough budget
• Charged by provisioned throughput capacity

• When to use HBase:
– Low cost

– Less constraints (Item size, query result)

– Open source

Module to Read

• UNIT 5: Distributed Programming and
Analytics Engines for the Cloud
– Module 16: Introduction to Distributed

Programming for the Cloud

– Module 17: Distributed Analytics Engines for the
Cloud: MapReduce

– Module 18: Distributed Analytics Engines for the
Cloud: Pregel

– Module 19: Distributed Analytics Engines for the
Cloud: GraphLab

Project 4

• MapReduce

– Hadoop MapReduce

• Input Text Predictor: NGram Generation

– NGram Generation

• Input Text Predictor: Language Model and
User Interface

– Language Model Generation

Google

• Inverted index
– Word -> {doc1, doc2, …}

• Ranking …

Google

• Google Instant
– Input text predictor

– Generate a list of phrases in a text corpus with

their corresponding counts

– Rank the probability

MapReduce Reflection on Project 1

• The idea of MapReduce

How many times
does the word
“Apple” appear in
these books?

I heard 6 “Apple”s !

Apple,1

Apple,1
Apple,1
Apple,1

Apple,1
Apple,1

MapReduce Reflection on Project 1

• The idea of MapReduce

 Orange,1
Blueberry,1
Blueberry,1
Apple,1

Apple,1
Apple,1
Apple,1
Orange,1

Apple,1
Apple,1
Orange,1
Blueberry,1

Apple ?

Blueberry ?

Orange ?

How Do I know Who
is the “Apple” Man? You Don’t!

MapReduce Reflection on Project 1

• The idea of MapReduce

 Orange,1
Blueberry,1
Blueberry,1
Apple,1

Apple,1
Apple,1
Apple,1
Orange,1

Apple,1
Apple,1
Orange,1
Blueberry,1

Apple ?

Blueberry ?

Orange ?

Magic Box
(Shuffle,

sort,
merge)

Map Phase Reduce Phase

Mapper

Reducer

MapReduce This Week

• The idea of MapReduce

Apple ?

Blueberry ?

Orange ?

Map Phase Reduce Phase

Black Box
(Shuffle,

sort,
merge)

Orange,1
Blueberry,1
Blueberry,1
Apple,1

Apple,1
Apple,1
Apple,1
Orange,1

Apple,1
Apple,1
Orange,1
Blueberry,1

Jar instead of streaming

MapReduce

• Mapper

– Input: key-value pairs

• lines in files in our project

– Output: key-value pairs

• Keys are used in Shuffling and Merge to find the Reducer
that handles the intermediate output for that specific key. (in
our example, Apple, Orange and Blueberry are keys)

• Values are messages sent from mapper to reducer (in our
case it is always 1)

• Mappers’ output is intermediate because reducers will
receive the key-value pairs and take them as input.

MapReduce

• Reducer

– Input: key-value pairs

– Output: key-value pairs

• the final result we need

• Depends on what we want, our code should process
the value in the key-value pairs that we got accordingly
(in the word count example, we just add up all the
values).

GFS

MapReduce

BigTable

HDFS

MapReduce

HBase

HDFS
• Hadoop Distributed File System

• Open source version of Google File System

MapReduce and HDFS

• Workflow

Project 4 Module 1

• Write a MapReduce program that will build an
inverted index of documents

• Have to use EMR Custom Jar

– CANNOT use EMR streaming

Upcoming Deadlines
• Project 4:

• Unit 5:

UNIT 5: Distributed Programming and Analytics
Engines for the Cloud

Module 16: Introduction to Distributed Programming
for the Cloud

Module 17: Distributed Analytics Engines for the
Cloud: MapReduce

Project 4

 MapReduce

 Hadoop MapReduce Checkpoint
Available Now
Due 4/13/14 11:59 PM

https://oli.cmu.edu/jcourse/webui/syllabus/module.do?context=bb7d3a9080020ca6011d37cc332d6db8
https://oli.cmu.edu/jcourse/webui/syllabus/module.do?context=bb7d3a9080020ca6011d37cc332d6db8
https://oli.cmu.edu/jcourse/webui/syllabus/module.do?context=bb7d3a9080020ca6011d37cc332d6db8
https://oli.cmu.edu/jcourse/webui/syllabus/module.do?context=bb7d3a9080020ca6011d37cc332d6db8
https://oli.cmu.edu/jcourse/webui/syllabus/module.do?context=bb7d3a9080020ca6011d37cc332d6db8
https://oli.cmu.edu/jcourse/webui/syllabus/module.do?context=bb7d3a9080020ca6011d37cc332d6db8
https://oli.cmu.edu/jcourse/webui/syllabus/module.do?context=bb7d3a9080020ca6011d37cc332d6db8
https://oli.cmu.edu/jcourse/webui/syllabus/module.do?context=bb7d3a9080020ca6011d37cc332d6db8
https://oli.cmu.edu/jcourse/webui/syllabus/module.do?context=bb7d3abd80020ca601a0e12efcbad486
https://oli.cmu.edu/jcourse/webui/syllabus/module.do?context=bb7d3abd80020ca601a0e12efcbad486
https://oli.cmu.edu/jcourse/webui/syllabus/module.do?context=bb7d3abd80020ca601a0e12efcbad486
https://oli.cmu.edu/jcourse/webui/syllabus/module.do?context=bb7d3abd80020ca601a0e12efcbad486
https://oli.cmu.edu/jcourse/webui/syllabus/module.do?context=bb85f42e80020ca600d947288a7c94b8
https://oli.cmu.edu/jcourse/webui/syllabus/module.do?context=bb85f42e80020ca600d947288a7c94b8
https://oli.cmu.edu/jcourse/assessment2/activity/view.do?context=bb85f44080020ca6017f64d4b9ef6cde&view=assessment2
https://oli.cmu.edu/jcourse/webui/course/builder/edit_schedule_activity.do?actCtxNodeId=bb85f42d80020ca6019699ca36f60a54
https://oli.cmu.edu/jcourse/webui/course/builder/edit_schedule_activity.do?actCtxNodeId=bb85f42d80020ca6019699ca36f60a54
https://oli.cmu.edu/jcourse/webui/course/builder/edit_schedule_activity.do?actCtxNodeId=bb85f42d80020ca6019699ca36f60a54

Demo Outline

• Introduction to Hadoop & HDFS

• Code for MapReduce example

• Demo of using custom Jar

Hadoop

• Apache Hadoop
– A framework for running applications on a large

cluster of commodity hardware

– Implements the MapReduce computational paradigm

– Uses HDFS for data storage

– Engineers with little knowledge of distributed
computing can finish the code in a short period

• MapReduce
– A programming model for processing large data sets

using a parallel distributed algorithm

HDFS

• Paper
– The Hadoop Distributed File System, Konstantin

Shvachko, Hairong Kuang, Sanjay Radia, Robert
Chansler, Yahoo!, 2010 IEEE 26th Symposium on
Mass Storage Systems and Technologies (MSST)

• Purpose
– Implemented for running Hadoop’s MapReduce

applications with distributed storage

– An open-source framework which can be used by
different clients with different needs

Custom Jar

• What is custom Jar

– Customize your java MapReduce program

• Why custom Jar

– More resources: HDFS/HBASE/S3

– More job configuration flexibility

– More control of how the resources are utilized

Demo

• WordCount program demo

– Code review

– Launch EMR Cluster

– Compile Java code

– Generate WordCount input

– Run WordCount program

Recommendations

• Test for correctness with small datasets first

• DO NOT need to restart a new cluster

– EMR will charge you one hour of usage for
instances even though your EMR job failed to start

• Pay attention to your code efficiency

• Version of Hadoop

– should match the version of your API

• Start early

Q & A

• Thanks

