
15-122 Programming Homework 2 Page 1 of 6

15-122: Principles of Imperative Computation, Spring 2020

Programming Homework 2: Pixels

Due: Thursday 30th January, 2020 by 9pm

This second programming assignment is designed to get you used to writing some precondi-
tions and postconditions, deals with bitwise operations on integers, and introduces the idea
of an interface.

The code handout for this assignment is on Autolab. The �le README.txt in the code
handout goes over the contents of the handout and explains how to hand the assignment in.
There is a SEVEN (7) PENALTY-FREE HANDIN LIMIT, with the idea that for each task
you can test your code, hand in, and then �x any bugs found by Autolab while working on
and testing the next task. Every additional handin will incur a small (5%) penalty (even
if using a late day). Your score for this assignment will be the score of your last Autolab
submission.

1 Pixels

To capture the contents of a single pixel, we need to know two things: how opaque or
transparent it is, and what color it is.

One common way to do this is called ARGB.1 The transparency is stored as an integer
in the range [0, 256), where 0 is completely transparent and 255 is completely opaque. This
is called the alpha (A) value. The color is stored as three other integers, each also in the
range [0, 256), which respectively describe the intensity of the red (R), green (G), and blue
(B) color in the pixel. So a pixel is described by four numbers between 0 (inclusive) and 256
(exclusive).

There are many ways to represent a pixel in a computer! One way is to take the four
numbers that make up a pixel and pack them inside a 32-bit C0 int, breaking that int up
into 4 components with 8 bits each:

a0a1a2a3a4a5a6a7 r0r1r2r3r4r5r6r7 g0g1g2g3g4g5g6g7 b0b1b2b3b4b5b6b7

where:

a0a1a2a3a4a5a6a7 represents the alpha value (how opaque the pixel is)
r0r1r2r3r4r5r6r7 represents the intensity of the red component of the pixel
g0g1g2g3g4g5g6g7 represents the intensity of the green component of the pixel
b0b1b2b3b4b5b6b7 represents the intensity of the blue component of the pixel

Each 8-bit component can range between a minimum of 0 (binary 00000000 or hex 0x00)
to a maximum of 255 (binary 11111111 or hex 0xFF).

1http://en.wikipedia.org/wiki/RGBA_color_space

c© Carnegie Mellon University 2020

https://autolab.andrew.cmu.edu/courses/15122q-s20/
https://autolab.andrew.cmu.edu/courses/15122q-s20/
https://autolab.andrew.cmu.edu/courses/15122q-s20/
http://en.wikipedia.org/wiki/RGBA_color_space


15-122 Programming Homework 2 Page 2 of 6

In the �le pixel.c0, right at the top we announce that we will be working with a type
pixel that is actually represented as a single integer by writing a type de�nition:

typedef int pixel;

The rest of the �le should contain the implementation of an interface to the newly-de�ned
pixel type (see Section 3 for what interfaces are exactly). By using this interface, we can
manipulate pixels as four integers for red, green, blue, and alpha values instead of worrying
exactly how they are packed into an integer � or even represented in a totally di�erent way.

Task 1 (4 points) Complete the C0 �le pixel.c0. Translate the English descriptions into
code and the English contracts into C0 contracts.

You can load your completed �le into coin. Remember to use the -d �ag to check contracts.� �
% coin -d pixel.c0
--> make_pixel(255, 238, 127, 45);� �
2 Testing

We can generally think about four ways that a program might fail:

1. Do something unsafe: access an array out of bounds, divide by zero, call a function
with inputs that violate the function's preconditions.

2. Violate a loop invariant, an assertion, or a postcondition.

3. Return the wrong answer without violating any contracts.

4. Fail to terminate.

For the fast exponent function we considered in lectures 1 and 2, failure #3 was impossible:
the postcondition speci�ed that exactly the right answer was returned. That won't always
be the case, and it isn't the case for pixel.c0.

Task 2 (2 points) Make a copy of the pixel.c0 �le named pixel-bad.c0:� �
% cp pixel.c0 pixel-bad.c0� �
Edit this �le so that it contains a broken implementation of pixels. Keep the contracts the
same, and avoid failures #1 and #4 � the program should remain safe and should terminate.
However, at least one function should sometimes violate its postcondition (#2, a contract
failure) and at least one function should sometimes give the wrong answer without violating
a postcondition (#3, a contract exploit).

c© Carnegie Mellon University 2020



15-122 Programming Homework 2 Page 3 of 6

Task 3 (7 points) Complete the �le pixel-test.c0 that checks for both contract failures

and contract exploits in an implementation of the pixels interface. (See Appendix A, or the
�le puzzle-test.c0 distributed with the previous programming homework for an example
of how to do this for function f.) At minimum, the test should catch the bugs you made
intentionally:� �
% cc0 -d pixel.c0 pixel-test.c0
% ./a.out

<Should run without errors>

% cc0 -d pixel-bad.c0 pixel-test.c0
% ./a.out

<An assertion should fail>� �
On Autolab we'll run your tests against some of our buggy pixel implementations too; you'll
need to catch bugs in our buggy pixel implementations for full credit.

3 Introduction to interfaces

It's useful to be able to store all the parts of a pixel within a single integer. But it's not
necessary to store the alpha value in the leftmost (also called high-order) 8 bits, nor is it
necessary to store the blue value in the rightmost (or low-order) 8 bits. In fact, it's not
even necessary to store pixels as integers at all! The �le pixel.c0 de�nes the type pixel
and de�nes �ve functions: make_pixel(a,r,g,b) tells us how we can create pixels, and
get_red(p), get_green(p), get_blue(p), and get_alpha(p) tell us what we can do to
pixels. We can say that these �ve functions form the interface to pixels � if a program
only uses those �ve functions to interact with the pixel type, then we can easily change the
representation of pixels without any of its code breaking. It's the implementation you wrote
that declares a pixel to be an 32-bit integer.

A simple way we might change the implementation would be to store the bits in a
di�erent order. A more drastic way that we might change the implementation is in the �le
pixel-array.c0. In that implementation, pixels are stored not as single integers but as
arrays of four integers:� �
% coin -d pixel.c0
--> pixel p = make_pixel(255,238,127,45);
p is -1147091 (int)
--> get_green(p);
127 (int)

% coin -d pixel-array.c0
--> pixel p = make_pixel(255,238,127,45);
p is 0x603A60 (int[] with 4 elements)
--> get_green(p);
127 (int)� �

c© Carnegie Mellon University 2020

https://autolab.andrew.cmu.edu/courses/15122q-s20/


15-122 Programming Homework 2 Page 4 of 6

While the person implementing the pixel interface obviously knows whether a pixel is
an integer or an array, the person using the pixel interface should treat the type pixel
as an unknown type (or abstract type), and shouldn't rely on details of how the type is
implemented. In this class, we'll use a typedef with underscores to emphasize that an
interface de�nes an abstract type and use the su�x �_t� in the name of this type:

//typedef ______ pixel_t;

The inner notation isn't actual valid C0, though, so you'll always see it as a comment in a
C0 �le next to the actual type de�nition.

An interface allows us to separate the library code, which understands the implementation
details, from the client code, which only knows about the interface. Setting up interfaces is
an important part of writing code � and this is even true when you're the person writing
both the library code and the client code! Interfaces are the basis of how we organize our
code and our large software projects. We'll be talking a lot more about interfaces later in
this class.

As we will see later in more detail, pixel is a nickname for the type of pixels as seen by
the library implementation (which knows exactly how pixels are represented) while pixel_t
is the type of pixels as seen by a client who uses this library (and needs to know nothing
about how pixels are represented).

4 Pixel manipulation and array aliasing

In this last part of this assignment, you will write code that uses this pixel_t interface:

/* Interface to pixels */

//typedef ______ pixel_t

pixel_t make_pixel(int alpha, int red, int green, int blue)
int get_alpha(pixel_t p)
int get_red(pixel_t p)
int get_green(pixel_t p)
int get_blue(pixel_t p)

The code you write for these tasks should respect the pixel interface � that is, your code
shouldn't make any assumptions about what a pixel is other than that a pixel can be created
with the make_pixel function and passed to the four get_ functions. If you write code that
respects the pixel interface, then you should be able to test your tasks.c0 �le against both
your pixel.c0 and pixel-array.c0.� �
% coin -d pixel.c0 tasks.c0
% coin -d pixel-array.c0 tasks.c0� �
The converse is nearly true as well: if your tasks.c0 can compile and run against both
pixel.c0 and pixel-array.c0, you can be pretty con�dent that it respects the interface.

The comments in tasks.c0 walk you through the tasks in the rest of the assignment:
component manipulation, quantization, and returning multiple arguments. You can run and

c© Carnegie Mellon University 2020



15-122 Programming Homework 2 Page 5 of 6

test your code with coin as described above, or you can write, compile, and run a test �le
like tasks-test.c0, as described in README.txt.

Task 4 (2 points) Complete the function remove_red in �le tasks.c0.

Task 5 (3 points) Complete function quantize in �le tasks.c0.
Quantization is a transformation on pixels. It can be performed on all the pixels in an

image to reduce the total number of colors used in that image.
Given a pixel and a quantization level q in the range [0, 8), we quantize by taking each

color component (red, green and blue) and clearing the lowest q bits. For example, suppose
we have a pixel with red intensity R = 0x6B (decimal 107), green intensity G = 0xBE

(decimal 190), and blue intensity B = 0xD7 (decimal 215). The color components of this
pixel are represented by these bytes:

RED GREEN BLUE
01101011 10111110 11010111

If the quantization level is 5, then the resulting pixel should have the following color com-
ponents (note how the lower 5 bits are all cleared to 0):

RED GREEN BLUE
01100000 10100000 11000000

A pixel processed with a quantization level of 0 should not change. For each pixel, do
not change its alpha component.

Task 6 (4 points) Complete the function test_quantize in �le tasks.c0.

Task 7 (3 points) Complete the function count_zeroes in �le tasks.c0.

c© Carnegie Mellon University 2020



15-122 Programming Homework 2 Page 6 of 6

A Appendix: Testing GCD

Say we have a function that is supposed to �nd the greatest common divisor of two positive
integers. (We haven't talked about how to write such a function, but you've seen bits and
pieces; search for �Euclid's algorithm� if you'd like to implement this function.)

int gcd(int x, int y)
//@requires x > 0 && y > 0;
//@ensures 0 < \result && x % \result == 0 && y % \result == 0;

The postcondition isn't the best one we could write � it checks that the result is a divisor
of x and y, not the greatest common divisor. A function that ignores its inputs and always
returns 1 satis�es this contract but is nevertheless an incorrect implementation of gcd.

We'll write some unit tests in a �le gcd-test.c0 that includes a main function. To
check for contract exploits, we need to make extra assertions that the output of the function
is correct. We could do this with the @assert contract, but it also makes sense to use the
built-in assert() function that runs whether or not -d is selected.

1 #use <util>
2 #use <conio>
3

4 int main() {
5 // Run some edge cases (check for contract errors only)
6 gcd(1, 1);
7 gcd(1, int_max());
8 gcd(int_max(), int_max());
9 gcd(int_max(), int_max() - 1);

10

11 // Test some regular cases (check for contract errors & exploits)
12 assert(gcd(2, 5) == 1);
13 assert(gcd(19, 21) == 1);
14 assert(gcd(81, 9) == 9);
15 assert(gcd(16, 100) == 4);
16

17 println("All tests passed!");
18 return 0;
19 }

Now we can use this test �le to test both good and bad implementations of GCD:� �
% cc0 -d gcd.c0 gcd-test.c0
% ./a.out
All tests passed!
0
% cc0 -d gcd-bad.c0 gcd-test.c0
% ./a.out
gcd-test.c0:14.3-14.27: assert failed
Abort trap: 6� �

c© Carnegie Mellon University 2020


	Pixels
	Testing
	Introduction to interfaces
	Pixel manipulation and array aliasing
	Appendix: Testing GCD

