
15-122: Principles of Imperative Computation, Spring 2020

Written Homework 2

Due on Gradescope: Monday 27th January, 2020 by 9pm

Name:

Andrew ID:

Section:

This written homework covers more reasoning using loop invariants and assertions, and
the C0 types int and bool as well as arrays.

Preparing your Submission You can prepare your submission with any PDF editor that
you like. Here are a few that prior-semester students recommended:
• pdfescape or dochub, two web-based PDF editors that work from anywhere.
• Preview, the Mac’s PDF viewer.
• Acrobat Pro, installed on all non-CS cluster machines, works on many platforms.
• iAnnotate works on any iOS and Android mobile device.

There are many more — use whatever works best for you. If you’d rather not edit a PDF,
you can always print this homework, write your answers neatly by hand, and scan it into
a PDF file — we don’t recommend this option, though.

Submitting your Work Once you are done, submit this assignment on Gradescope. Al-
ways check it was correctly uploaded. You have unlimited submissions.

Question: 1 2 3 4 Total

Points: 2.5 3 3 3.5 12

Score:

https://gradescope.com/courses/76833
http://www.pdfescape.com
https://dochub.com/
https://support.apple.com/en-us/HT201740
https://www.cmu.edu/computing/software/all/
https://www.iannotate.com/
https://gradescope.com/courses/76833

15-122 Written Homework 2 Page 1 of 15

1. Assertions in Loops

This question involves a series of functions f with one loop; each contains additional
@assert statements. None of the assertions will ever fail — they will never evaluate
to false when the function f is called with arguments that satisfy the precondition.
However, if our loop invariants aren’t up to the task, we may not be able to prove
these assertions hold. The distinction between an assertion being true and an assertion
being supported is a subtle but important one.

To support an assertion one may use the following facts:

• When local variables are untouched by a loop, statements we know to be true
about those variables before the loop remain valid inside the loop and after the
loop.

• For local variables that are modified by the loop, the loop guard and the loop
invariants are the only statements we can use.

– Inside of a loop, we know that the loop invariants held just before the loop
guard was checked and that the loop guard returned true.

– After a loop, we know that the loop invariants held just before the loop
guard was checked for the last time and that the loop guard returned false.

For each of the problems below, state whether each assertion is SUPPORTED or UN-
SUPPORTED and explain your reasoning. You can assume that the loop invariant is
true initially (before the loop guard is checked the first time) and that it is preserved
by any iteration of the loop. If you claim that the assertion is supported, your answer
should be a concise proof; if you claim that the assertion is unsupported, we only
expect an informal argument to explain why.

• If the assertion is supported, fill in the lines with a relevant fact on the left and a
justification for it on the right.

• If the assertion is not supported, use the lines to write a short explanation of why
it is not supported.

In either case, you may not need all the lines provided.

We’ve given one worked out solution below.

c© Carnegie Mellon University 2020

15-122 Written Homework 2 Page 2 of 15

1 int f(int a, int b)
2 //@requires 1 <= a && a < b;
3 {
4 int i = 1;
5 while (i < a)
6 //@loop_invariant i >= 1;
7 {
8 //@assert i < b; /*** Assertion 1 ***/
9 i += 1;

10 }
11 //@assert i == a; /*** Assertion 2 ***/
12 //@assert i != 0; /*** Assertion 3 ***/
13 return i;
14 }

Assertion 1 is: SUPPORTED

– i < a (by line 5)
– a < b (by line 2) and a and b not changed by loop

Therefore, we can conclude that

– i < b since i < a and a < b implies i < b

Assertion 2 is: UNSUPPORTED

– !(i < a) (by line 5)
– i >= a (by math)

Therefore, we cannot conclude that

– i == a (does not follow logically from any fact we know)

Assertion 3 is: SUPPORTED

– i >=1 (by line 6)

Therefore, we can conclude that

– i != 0 (by math)

c© Carnegie Mellon University 2020

15-122 Written Homework 2 Page 3 of 15

1.10.5pts
1 int f(int a, int b)
2 //@requires 0 <= a && 2*a < b;
3 //@requires a <= int_max()/2;
4 {
5 int i = 0;
6 while (i < a) {
7 //@assert i < b; /*** Assertion A ***/
8 i += 2;
9 a += 1;

10 }
11 //@assert a <= i; /*** Assertion B ***/
12 return i;
13 }

Assertion A is: UNSUPPORTED

by

by

by

by

by

Therefore we can/cannot conclude that

by

Assertion B is: SUPPORTED

by

by

by

by

by

Therefore we can/cannot conclude that

by

c© Carnegie Mellon University 2020

15-122 Written Homework 2 Page 4 of 15

1.21pt
1 int f(int a, int b)
2 //@requires 0 <= a && a <= b;
3 {
4 int i = 0;
5 while (i < a)
6 //@loop_invariant i <= a;
7 {
8 //@assert i < b; /*** Assertion A ***/
9 i += 1;

10 }
11 //@assert i == a; /*** Assertion B ***/
12 return i;
13 }

Assertion A is:

by

by

by

by

by

Therefore we can/cannot conclude that

by

Assertion B is:

by

by

by

by

by

Therefore we can/cannot conclude that

by

c© Carnegie Mellon University 2020

15-122 Written Homework 2 Page 5 of 15

1.31pt If relevant, you may assume the functions POW is defined as we did in class.

1 int f(int x, int y)
2 //@requires 0 <= x;
3 {
4 int i = 0;
5 int accum = 1;
6 while (i < x)
7 //@loop_invariant accum == POW(y, i);
8 {
9 //@assert i <= x; /*** Assertion A ***/

10 accum = accum * y;
11 i = i + 1;
12 }
13 //@assert accum == POW(y, x); /*** Assertion B ***/
14 return accum;
15 }

Assertion A is:

by

by

by

by

by

Therefore we can/cannot conclude that

by

Assertion B is:

by

by

by

by

by

Therefore we can/cannot conclude that

by

c© Carnegie Mellon University 2020

15-122 Written Homework 2 Page 6 of 15

2. Basics of C0: the int and bool Data Types

2.11.5pts Let p be an int in the C0 language. Express the following operations in C0 using
only constants in hexadecimal and only the bitwise operators (&, |, ^, ~, <<, >>).
Your answers should account for the fact that C0 uses 32-bit integers.
Each answer should consist of ONE line of C0. You can use multiple constants
and multiple bitwise operations, but no loops and no additional assignment
statements.

a. Set x equal to p with its lowest 8 bits cleared to 0 and with its middle 8 bits
set to 1 (so that, for example, 0xAB12CD34 becomes 0xAB1FFD00).

int x = ;

b. Set y equal to p with its highest and lowest 16 bits swapped (so that, for
example, 0x1234ABCD becomes 0xABCD1234)

int y = ;

c. Set z equal to p with its middle 16 bits flipped (0 =⇒ 1 and 1 =⇒ 0) (so that,
for example 0xAB0F1812 becomes 0xABF0E712).

int z = ;

2.20.5pts The function safe_add is intended to check that the result of adding three num-
bers a, b, and c is the same in normal integer arithmetic and in C0’s 32-bit two’s
complement signed modular arithmetic.
Does the following code satisfy this specification? If so, state why in one sen-
tence. If not, give positive 32-bit values for a, b, and c in hexadecimal such that the
check will return an incorrect result. Explain why the result is incorrect in this
case.

bool safe_add(int a, int b, int c) {
if (a > 0 && b > 0 && c > 0 && a + b + c < 0) return false;
if (a < 0 && b < 0 && c < 0 && a + b + c > 0) return false;
return true;

}

c© Carnegie Mellon University 2020

15-122 Written Homework 2 Page 7 of 15

2.31pt For each of the following statements, determine whether the statement is true
or false in C0. If it is true, explain why in one sentence. If it is false, give a
counterexample to illustrate why the statement is false.

For every int x, y: if x < y, then x + 1 <= y.

For every int x: x >> 1 is equivalent to x / 2.

For every int x, y, z: (x + y) * z is equivalent to z * y + x * z.

For every int x, y: x < y is equivalent to x - y < 0.

c© Carnegie Mellon University 2020

15-122 Written Homework 2 Page 8 of 15

3. Proving the correctness of functions with one loop

The Pell sequence is shown below:

0, 1, 2, 5, 12, 29, 70, 169, 408, 985, . . .

Each integer in in the sequence for n ≥ 3 is the sum of 2in−1 and in−2. By definition,
i1 = 0 and i2 = 1. Consider the following implementation for fastpell that returns
the nth Pell number, n ≥ 1. The body of the loop is not shown.

1 int PELL(int n)
2 //@requires n >= 1;
3 {
4 if (n <= 1) return 0;
5 else if (n == 2) return 1;
6 else return 2 * PELL(n-1) + PELL(n-2);
7 }
8

9 int fastpell(int n)
10 //@requires n >= 1;
11 //@ensures \result == PELL(n);
12 {
13 if (n <= 1) return 0;
14 if (n == 2) return 1;
15 int i = 0;
16 int j = 1;
17 int k = 2;
18 int x = 3;
19 while (x < n)
20 //@loop_invariant 3 <= x && x <= n;
21 //@loop_invariant i == PELL(x-2);
22 //@loop_invariant j == PELL(x-1);
23 //@loop_invariant k == i + 2*j;
24 {

// LOOP BODY NOT SHOWN: modifies i, j, k, and x
}

return k;
}

In this problem, we will reason about the correctness of the fastpell function when
the argument n is greater than or equal to 3, and we will complete the implementation
based on this reasoning.

(NOTE: To completely reason about the correctness of fastpell, we also need to
point out that fastpell(1) == PELL(1) and that fastpell(2) == PELL(2). This
is straightforward, because no loops are involved.)

c© Carnegie Mellon University 2020

15-122 Written Homework 2 Page 9 of 15

Note: The completed solution below shows you a general format for showing that a postcon-
dition holds given a valid loop invariant. The English explanation is kept to a minimum and
point-to reasoning plays a large role. In the future, you may be asked to write an entire solu-
tion in a clear, concise manner, and the solution below gives you an example of how you might
write such a solution.

3.11pt Loop invariant and negation of the loop guard imply postcondition
Complete the argument that the postcondition is satisfied assuming valid loop
invariant(s) by giving appropriate line numbers. Use point-to reasoning.

We know x <= n by line and we know x >= n by line , which
implies that x == n by logic.

The returned value \result is the value of k after the loop, so to show
that the postcondition on line 11 holds when n >= 3, it suffices to show
k == PELL(n) after the loop.

k == i + 2*j by line

== i + 2*PELL(x-1) by line

== PELL(x-2) + 2*PELL(x-1) by line

== PELL(x) by PELL definition, the commutativity

of +, and x >= 1 by line

3.21pt Loop invariant holds initially
Complete the argument for the loop invariants holding initially by giving appro-
priate line numbers.

The loop invariant 3 <= x on line 20 holds initially by line(s) .

The loop invariant x <= n on line 20 holds initially by line(s) .

The loop invariant on line 21 holds initially by line(s) .

The loop invariant on line 22 holds initially by line(s) .

The loop invariant on line 23 holds initially by lines 17, 15 and 16.

c© Carnegie Mellon University 2020

15-122 Written Homework 2 Page 10 of 15

3.30.5pts The loop invariant is preserved through any single iteration of the loop
Based on the given loop invariants, write the body of the loop. DO NOT use the
specification function PELL(). The specification function is meant to be used
in contracts only. Also, do not call fastpell recursively, since this isn’t fast!
(NOTE: To check your answer, you would prove that the loop invariants are
preserved by an arbitrary iteration of the loop, but you don’t have to do that for
us here — we’ll cover that process in the next question.)

18 while (x < n)
19 //@loop_invariant 3 <= x && x <= n;
20 //@loop_invariant i == PELL(x-2);
21 //@loop_invariant j == PELL(x-1);
22 //@loop_invariant k == i + 2*j;
23 {
24 i = ;

26 j = ;

28 k = ;

30 x = ;
31 }

33 return k;

3.40.5pts The loop terminates
The postcondition is satisfied only if the loop terminates. Explain concisely why
the function must terminate with the loop body you gave in the previous task.

The integer quantity is strictly decreasing because

Since the loop terminates if this quantity reaches 0 or less and this quantity is
strictly decreasing, the loop must terminate.

c© Carnegie Mellon University 2020

15-122 Written Homework 2 Page 11 of 15

4. The Preservation of Loop Invariants

The core of proving the correctness of a function with one loop is proving that the
loop invariant is preserved — that if the loop invariant holds at the beginning of an
iteration (just before the loop guard is tested), it still holds at the end of that iteration
(just before the loop guard is tested the next time).

For each of the following loops, state whether the loop invariant is ALWAYS PRE-
SERVED or NOT ALWAYS PRESERVED. If you say that the loop invariant is always
preserved, prove it using point-to reasoning. If you say that the loop invariant is not
always preserved, give a specific counterexample. When we ask for a counterexample,
what we mean is that we want specific, concrete values of the local variables such that
the loop guard and loop invariant will hold before the loop body executes for some
iteration, but where the loop invariant will not hold after the loop body executes that
one iteration.

Here are two solved examples to give you an idea of how to write your solutions. In-
tegers are defined as C0’s 32-bit signed two’s-complement numbers; be careful about
this when you think about counterexamples!

1 while (x <= y)
2 //@loop_invariant x < y;
3 {
4 x = x + 1;
5 }

Solution: NOT ALWAYS PRESERVED

Counterexample: x=2 and y=3, satisfies loop invariant and loop guard.

After this iteration, x=3 and y=3, violating loop invariant.

1 while (x + 1 < y)
2 //@loop_invariant x < y + 1;
3 {
4 x = x + 2;
5 }

Solution: ALWAYS PRESERVED.

Assume x < y + 1 (by line 2) before an iteration. We must show x′ < y + 1
after an iteration.

Since x′ = x + 2 (by line 4), we need to show x + 2 < y + 1.

a) x + 1 < y by line 1
b) x + 2 <= y by math (because x + 1 < y)
c) y < y + 1 by line 2 that lets us know y != int_max()

d) x + 2 < y + 1 by (b) and (c)

c© Carnegie Mellon University 2020

15-122 Written Homework 2 Page 12 of 15

4.10.5pts
1 while (x < y && x <= 15122)
2 //@loop_invariant x <= y;
3 {
4 if (0 <= z && z < 10) {
5 x = x + z;
6 }
7 }

NOT ALWAYS PRESERVED

Counterexample: x = , y = , z = .

The loop invariant and loop guard are satisfied at the start of the iteration but
the loop invariant is not satisfied at the end of that iteration.

4.20.5pts
1 while (i <= x)
2 //@loop_invariant x < y;
3 //@loop_invariant i <= y;
4 {
5 i++;
6 }

ALWAYS PRESERVED

The first loop invariant is always preserved because

.

For the second loop invariant, we assume that i ≤ y and want to show that
i′ ≤ y′ (or equivalently i′ ≤ y since y does not change in the loop).

Using operational reasoning for one iteration:

By line 5, i′ = .

By line 2, x+ 1 ≤ .

By line 1, ≤ x+ 1.

The previous three statements taken together imply that i′ ≤ y.

c© Carnegie Mellon University 2020

15-122 Written Homework 2 Page 13 of 15

4.30.5pts In this example, you are using two functions with the following declarations:

1 bool f(int x);
2 int mid(int lo, int hi)
3 /*@requires 0 <= lo && lo < hi; @*/
4 /*@ensures lo <= \result && \result < hi; @*/ ;

That is, mid(lo, hi) takes two integers and returns an integer in the non-empty
range [lo, hi). The function f(x) takes an integer and returns a boolean; we
don’t know anything about its return value, so we reason about both cases.
Now consider the following code that uses functions f and mid:

11 while (lo < hi)
12 //@loop_invariant 0 <= lo && lo <= hi;
13 {
14 m = mid(lo, hi);
15 if (f(m)) {
16 lo = m+1;
17 } else {
18 hi = m;
19 }
20 }

ALWAYS PRESERVED (Complete the indicated parts of the proof)

Assume:

To show:

Case 1: f(m) returns true

By lines 15 and 16, lo‘ =

By line 15, hi‘ =

Therefore

Case 2: f(m) returns false

By line 15, lo‘ =

By lines 15 and 18, hi‘ =

Therefore. . . (Skip this, as it looks much like the previous case)

c© Carnegie Mellon University 2020

15-122 Written Homework 2 Page 14 of 15

4.40.5pts
1 while (i < 24)
2 //@loop_invariant 2*i == j;
3 {
4 i++;
5 if (i % 7 != 4) {
6 j += 2;
7 }
8 }

4.50.5pts
1 while (a != b)
2 //@loop_invariant a > b || b > a;
3 {
4 if (a > b) {
5 a = a - b;
6 } else {
7 b = b - a;
8 }
9 }

c© Carnegie Mellon University 2020

15-122 Written Homework 2 Page 15 of 15

4.60.5pts
1 while (e > 0)
2 //@loop_invariant e > 0 || accum == POW(x,y);
3 {
4 accum = accum * x;
5 e = e - 1;
6 }

4.70.5pts
1 while (x == 2*y)
2 //@loop_invariant i == 4*j;
3 {
4 i = i+2*x;
5 j = j+y;
6 x = f(i);
7 }

c© Carnegie Mellon University 2020

