
15-122: Principles of Imperative Computation, Spring 2020

Written Homework 3

Due on Gradescope: Monday 3rd February, 2020 by 9pm

Name:

Andrew ID:

Section:

This written homework covers specifying and implementing search in an array and how
to reason with contracts. You will use some of the functions from the arrayutil.c0
library that was discussed in lecture in this assignment.

Preparing your Submission You can prepare your submission with any PDF editor that
you like. Here are a few that prior-semester students recommended:

• PDFescape or DocHub, two web-based PDF editors that work from anywhere.
• Preview, the Mac’s PDF viewer.
• Acrobat Pro, installed on all non-CS cluster machines, works on many platforms.
• iAnnotate works on any iOS and Android mobile device.

There are many more — use whatever works best for you. If you’d rather not edit a PDF,
you can always print this homework, write your answers neatly by hand, and scan it into
a PDF file — we don’t recommend this option, though.

Submitting your Work Once you are done, submit this assignment on Gradescope. Al-
ways check it was correctly uploaded. You have unlimited submissions.

Question: 1 2 3 4 Total

Points: 3.5 3.5 3 2 12

Score:

https://gradescope.com/courses/76833
http://www.pdfescape.com
https://dochub.com/
https://support.apple.com/en-us/HT201740
https://www.cmu.edu/computing/software/all/
https://www.iannotate.com/
https://gradescope.com/courses/76833

15-122 Written Homework 3 Page 1 of 8

1. Debugging Preconditions and Postconditions

Here is an initial, buggy specification of the function find that returns the index of the
first occurrence of an element x in an array A. You should assume the find function
does not modify the contents of the array A in any way.

1 int find(int x, int[] A, int n)
2 //@requires 0 <= n && n <= \length(A);
3 // (nothing to see here)
4 /*@ensures (\result == -1 && !is_in(x, A, 0, n))
5 || (0 <= \result && \result < n
6 && A[\result] == x
7 && A[\result-1] < x); @*/

1.10.5pts Give values of A and \result below, such that the precondition evaluates to true
and checking the postcondition will cause an array-out-of-bounds exception.

• x = 202

• A =

• n = 5

• \result =

1.20.5pts Notice that the postcondition seems to be relying on A being sorted, although the
precondition does not specify this. It might be possible, then, that unsorted input
will reveal additional bugs in our initial specification.
Give values for A and \result below, such that \result != -1, the precondition
and the postcondition both evaluate to true, and \result is not the index of the
first occurrence of x in the array.

• x = 202

• A =

• n = 5

• \result =

c© Carnegie Mellon University 2020

15-122 Written Homework 3 Page 2 of 8

1.30.5pts Give values for A and \result below, such that the precondition evaluates to
true, the postcondition evaluates to false, and \result is the index of the first
occurrence of x in the array.

• x = 202

• A =

• n = 5

• \result =

1.41pt Edit line 7 slightly so that, if we added an additional precondition

//@requires is_sorted(A, 0, n);

the postcondition for find would be safe and it would correctly enforce that
A[\result] is the first occurrence of x in A. Do not use any of the arrayutil.c0
specification functions.
The addition you make to the postcondition should run in constant time (O(1)). (We
don’t usually care about the complexity of our contracts, of course, but this limits what
kinds of answers you can give. In the future, unless we specifically say otherwise, you
can assume that the efficiency of contracts doesn’t matter.)

7 ;

1.51pt Edit line 7 so that whether or not we require that the array is sorted, the postcon-
dition for find is safe and correct. Make the answer as simple as possible. You’ll
need to use one of the arrayutil.c0 specification functions.

7 ;

c© Carnegie Mellon University 2020

15-122 Written Homework 3 Page 3 of 8

2. The Loop Invariant

Now we will consider a buggy implementation with a correct specification.

1 int find(int x, int[] A, int n)
2 //@requires 0 <= n && n <= \length(A);
3 //@requires is_sorted(A, 0, n);
4 /*@ensures (\result == -1 && !is_in(x, A, 0, n))
5 || (0 <= \result && \result < n
6 && A[\result] == x
7 /* YOUR ANSWER FOR PART (4) OF THE PREVIOUS QUESTION*/); @*/
8 {
9 int lo = 0;

10 int hi = n;
11 while (lo < hi)
12 //@loop_invariant 0 <= lo && lo <= hi && hi <= n;
13 //@loop_invariant gt_seg(x, A, 0, lo);
14 //@loop_invariant le_seg(x, A, hi, n);
15 {

...

21 }
22 //@assert lo == hi;
23 return -1;
24 }

You should assume that the missing loop body does not write to the array A or modify
the local variables x, A, or n, but that it might modify lo or hi.

2.10.5pts In one sentence, explain why gt_seg(x, A, 0, 0) and le_seg(x, A, n, n)
are always true, assuming 0 <= n && n <= \length(A). Your answer should
involve the size of the array segment being tested.

c© Carnegie Mellon University 2020

15-122 Written Homework 3 Page 4 of 8

2.21pt Prove that the loop invariants (lines 12–14) hold initially.

0 <= lo is true because of line(s)

lo <= hi is true because of line(s)

hi <= n is true because of line(s)

gt_seg(x, A, 0, lo) is true because of line(s)

le_seg(x, A, hi, n) is true because of line(s)

Take for granted that all the loop invariants are known to be safe. You do need line
n <= \length(A) from line 2 to reason that the last loop invariant involving
le_seg is safe (that it satisfies its preconditions). You don’t need to include line 2
in your proof that le_seg(x,A,hi,n) always evaluates to true.

2.30.5pts Danger! These loop invariants do not imply the postcondition when the function
exits on line 23. Give specific values for A, lo, and hi such that the precondition
evaluates to true, the loop guard evaluates to false, the loop invariants evaluate
to true, and the postcondition evaluates to false, given that \result == -1.

• x = 202

• A =

• n = 5

• \result = -1

• lo =

• hi =

c© Carnegie Mellon University 2020

15-122 Written Homework 3 Page 5 of 8

2.41.5pts Modify the code after the loop so that, if the loop terminates, the postcondition
will always be true. The conditional and the return statement should both run in
constant time (O(1)) and should not use arrayutil.c0 specification functions.
Take care to ensure that any array access you make is safe! You know that the loop
invariants on lines 12–14 are true, and you know that the loop guard is false
(which, together with the first loop invariant on line 12, justifies the assertion
lo == hi).

22 /* Loop ends here... */
23 //@assert lo == hi;

25 if ()

27 return ;

29 return -1; // old line 23
30 } // old line 24

3. Code Revisions
Here is a loop body that performs linear search. You can use it as an implemen-
tation for lines 15–21 on page 3:

15 {
16 if (A[lo] == x)
17 return lo;
18 if (A[lo] > x)
19 return -1;
20 lo = lo + 1;
21 }
22 //@assert lo == hi;

3.11pt For the loop invariants to hold for this loop body, they must be preserved through
each iteration. Prove that the invariant on line 12 on page 3 is preserved by this
loop body — you may not need all the provided lines.

A assumption

B by

C by

D by

E by

Therefore we conclude that

by

c© Carnegie Mellon University 2020

15-122 Written Homework 3 Page 6 of 8

3.21pt Prove that the invariant in line 13 is preserved by this loop body — you may not
need all the provided lines. (The proof for line 14 is not required for this answer.)

A assumption

B by

C by

D by

E by

F by

Therefore we conclude that

by

3.30.5pts You might have noticed in the previous part that hi does not actually change
during the loop, even though all our reasoning assumes it might. So now, com-
plete this simpler loop invariant for the modified code by writing a line that tells
you something about hi. The resulting loop invariant should be simple, should
be true initially, should be preserved by any iteration of the loop, and should al-
low you to prove the postcondition without the modifications you made in part 4
of the previous question. (You don’t have to write the proof.)

12 //@loop_invariant 0 <= lo && lo <= hi;

13 //@loop_invariant gt_seg(x, A, 0, lo);

14 //@loop_invariant ;

3.40.5pts Here’s an alternate loop body that does perform binary search. You can use it as
a replacement for code at the beginning of this question.

15 {
16 int mid = lo + (hi-lo)/2;
17 if (A[lo] == x) return lo;
18 if (A[mid] < x) lo = mid+1;
19 else { /*@assert(A[mid] >= x); @*/
20 hi = mid;
21 }
22 }

c© Carnegie Mellon University 2020

15-122 Written Homework 3 Page 7 of 8

Show that your answer for the above task is not a loop invariant of a loop with
this body. Give specific values for all variables such that n and A satisfy the pre-
conditions, the loop guard lo < hi evaluates to true, and your loop invariants
from the previous question evaluate to true before this loop body runs, but those
loop invariants evaluate to false after this loop body runs.

• x = 202

• A =

• n = 5

• lo =

• hi =

c© Carnegie Mellon University 2020

15-122 Written Homework 3 Page 8 of 8

4. Timing Code

The following run times were obtained when using two different algorithms on a
data set of size n. You are asked to extrapolate the asymptotic complexity of these
algorithms based on this time data. Determine the asymptotic complexity of each
algorithm as a function of n. Use big-O notation in its tightest form and briefly explain
how you reached the conclusion.

4.11pt n Execution Time
1000 0.564 milliseconds
2000 2.271 milliseconds
4000 8.992 milliseconds
8000 36.150 milliseconds

Asymptotic complexity: O()

4.21pt n Execution Time
1000 0.043 milliseconds

1000000 43.68 milliseconds
1000000000 43.9 seconds

Asymptotic complexity: O()

c© Carnegie Mellon University 2020

