
15-122: Principles of Imperative Computation, Spring 2020

Written Homework 9

Due on Gradescope: Tuesday 31st March, 2020 by 9pm

Name:

Andrew ID:

Section:

This written homework covers binary search trees and AVL trees.

Preparing your Submission You can prepare your submission with any PDF editor that
you like. Here are a few that prior-semester students recommended:

• PDFescape or DocHub, two web-based PDF editors that work from anywhere.
• Preview, the Mac’s PDF viewer.
• Acrobat Pro, installed on all non-CS cluster machines, works on many platforms.
• iAnnotate works on any iOS and Android mobile device.

There are many more — use whatever works best for you. If you’d rather not edit a PDF,
you can always print this homework, write your answers neatly by hand, and scan it into
a PDF file — we don’t recommend this option, though.

Submitting your Work Once you are done, submit this assignment on Gradescope. Al-
ways check it was correctly uploaded. You have unlimited submissions.

Question: 1 2 Total

Points: 7.5 4.5 12

Score:

https://gradescope.com/courses/76833
http://www.pdfescape.com
https://dochub.com/
https://support.apple.com/en-us/HT201740
https://www.cmu.edu/computing/software/all/
https://www.iannotate.com/
https://gradescope.com/courses/76833

15-122 Written Homework 9 Page 1 of 7

1. Binary Search Trees

1.11pt Draw the final binary search tree that results from inserting the following keys
in the order given. Make sure all branches in your tree are drawn clearly so we
can distinguish left branches from right branches.

93, 86, 71, 115, 88, 99, 94, 77, 95, 109

c© Carnegie Mellon University 2020

15-122 Written Homework 9 Page 2 of 7

1.22pts How many different binary search trees can be constructed using the following
five keys if they can be inserted in any order?

42, 11, 59, -7, 83

Show how your answer is derived. We’ve begun the derivation below; we’ve
used t(n) to stand for the number of binary search trees with n nodes.
Think recursively: How many trees with 0 nodes can possibly exist? How many
different trees with 1 node can possibly exist? 2 nodes? 3 nodes? 4 nodes?
Think about how to build up your answer from answers to simpler questions.
(It might help to come back to this question after doing the last question on AVL
tree height.)

n t(n)

0 t(0) = 1

1 t(1) = 1

2 t(2) = t(0)× t(1) + t(1)× t(0) = 2

3 t(3) =

4 t(4) =

5 t(5) =

What is the general formula for t(n) when n > 0?

t(n) =

c© Carnegie Mellon University 2020

15-122 Written Homework 9 Page 3 of 7

For the next few questions, we consider the implementation of dictionaries as binary
search trees in the lecture notes. In particular, recall the following declarations:

// typedef _______ key;
// typedef _______* entry;
key entry_key(entry e) /*@requires e != NULL; @*/ ;

bool is_bst(tree* T) {
return is_tree(T) && is_ordered(T, NULL, NULL);

}

struct dict_header {
tree* root;

};
typedef struct dict_header dict;

bool is_dict(dict* D) {
return D != NULL

&& is_bst(D->root);
}

Like in class, the client defines two functions: entry_key(e) that extracts the key of
entry e, and key_compare(k1,k2) that returns -1 if key k1 is “less than” key k2, 0 if
k1 is “equal to” k2, and 1 if k1 is “greater than” k2.
1.31pt Assume that the client also provides a function entry_print(e) that prints the

given entry e in a readable format on one line. Complete the function dict_print
that prints the entries in a dictionary on one line in order from smallest key to
largest key. If the dictionary is empty, nothing is printed. You will need a recur-
sive helper function tree_print to complete the task.
Think recursively: if you are at a non-empty node, what are the three things you need
to print, and in what order? You should not need to examine the keys since the contract
guarantees the argument is a BST.

void tree_print(tree* T)
//@requires is_bst(T);
{

}

void dict_print(dict* D)
//@requires is_dict(D);
{
tree_print();

print("\n");
}

c© Carnegie Mellon University 2020

15-122 Written Homework 9 Page 4 of 7

1.4 Consider extending the dictionary library implementation with the following
function which deletes the entry with the given key k, if any.
void dict_delete(dict* D, key k)
//@requires is_dict(D);
//@ensures is_dict(D);
{
D->root = bst_delete(D->root, k);

}

We will proceed in two steps.

a.1.5pts Complete the code for the recursive helper function largest_child below
which removes and returns the largest child rooted at a given tree node T.
(HINT: Finding the largest child of T actually doesn’t require us to look at the keys.
The largest child must be in one specific location.)

entry largest_child(tree* T)
//@requires is_bst(T) && T != NULL && T->right != NULL;
{
if (T->right->right == NULL) {

entry e = ;

T->right = ;

return e;
}

return largest_child();

}

b.2pts Complete the code for the recursive helper function bst_delete on the next
page which is used by the function dict_delete above. This function should
return a pointer to the tree rooted at T once the entry is deleted (if it is in the
tree). Note that this function uses the largest_child function you just com-
pleted.

c© Carnegie Mellon University 2020

15-122 Written Homework 9 Page 5 of 7

tree* bst_delete(tree* T, key k)
//@requires is_bst(T);
//@ensures is_bst(\result);
{
if (T == NULL) return NULL; // key is not in the tree

int cmp = key_compare(k, entry_key(T->data));
if (cmp > 0) {

= bst_delete(T->right, k);

return T;
}
else if (cmp < 0) {

= bst_delete(T->left, k);

return T;
}
else { // key is in current tree node T
if (T->right == NULL)

return ;

else if (T->left == NULL)

return ;

else { // T has two children
if (T->left->right == NULL) {

// Replace T’s data with the left child’s data

;

// Replace the left child with its left child

;

return T;
}
else { // Search for the largest child in the left

// subtree of T and replace the data in node
// T with this data after removing the largest
// child in the left subtree

T->data = largest_child(T->left);
return T;

}
}

}
}

c© Carnegie Mellon University 2020

15-122 Written Homework 9 Page 6 of 7

2. AVL Trees

2.12pts Draw the AVL trees that result after successively inserting the following keys
into an initially empty tree, in the order shown:

E, J, N, L, X, K, T

Show the tree after each insertion and subsequent re-balancing (if any) is com-
pleted: the tree after the first element, E, is inserted into an empty tree, then the
tree after J is inserted into the first tree, and so on for a total of seven trees. Make
it clear what order the trees are in.
Be sure to maintain and restore the BST invariants and the additional balance
invariant required for an AVL tree after each insert.

c© Carnegie Mellon University 2020

15-122 Written Homework 9 Page 7 of 7

2.2 Recall our definition for the height h of a tree:

The height of a tree is the maximum number of nodes on a path from the root to
a leaf. So the empty tree has height 0, the tree with one node has height 1, and a
balanced tree with three nodes has height 2.

The minimum and maximum number of nodes m in a valid AVL tree is related
to its height. The goal of this question is to quantify this relationship.

a.1pt Let m(h) be the minimum number of nodes in an AVL tree of height h. Fill
in the table below relating h and m(h):

h m(h)

0 0

1 1

2 2

3

4

5

6

b.1pt Guided by the table in part (i), give an expression for m(h).
Here’s a hint: recall that the nth Fibonacci number F (n) is defined by:

F (0) = 0

F (1) = 1

F (n) = F (n− 1) + F (n− 2), n > 1

You may find it useful to use the Fibonacci function F (n) in your answer.
Your answer does not need to be a closed form expression; it could be a
recursive definition like the one for F (n).

c.0.5pts Give a closed form expression (non-recursive) for M(h), the maximum num-
ber of nodes in a valid AVL tree of height h.

M(h) =

c© Carnegie Mellon University 2020

