
15-122: Principles of Imperative Computation, Spring 2020

Written Homework 10

Due on Gradescope: Thursday 9th April, 2020 by 9pm

Name:

Andrew ID:

Section:

This written homework covers priority queues and their implementation as heaps.

Preparing your Submission You can prepare your submission with any PDF editor that
you like. Here are a few that prior-semester students recommended:

• PDFescape or DocHub, two web-based PDF editors that work from anywhere.
• Preview, the Mac’s PDF viewer.
• Acrobat Pro, installed on all non-CS cluster machines, works on many platforms.
• iAnnotate works on any iOS and Android mobile device.

There are many more — use whatever works best for you. If you’d rather not edit a PDF,
you can always print this homework, write your answers neatly by hand, and scan it into
a PDF file — we don’t recommend this option, though.

Submitting your Work Once you are done, submit this assignment on Gradescope. Al-
ways check it was correctly uploaded. You have unlimited submissions.

Question: 1 2 3 Total

Points: 5 3.5 3.5 12

Score:

https://gradescope.com/courses/76833
http://www.pdfescape.com
https://dochub.com/
https://support.apple.com/en-us/HT201740
https://www.cmu.edu/computing/software/all/
https://www.iannotate.com/
https://gradescope.com/courses/76833


15-122 Written Homework 10 Page 1 of 8

1. Heaps

As discussed in class, a min-heap is a hierarchical data structure that satisfies two
invariants:

Order: Every child has value greater than or equal to its parent.
Shape: Each level of the min-heap is completely full except possibly the
last level, which has all of its elements stored as far left as possible. (Also
known as a complete binary tree).

Smaller integer values represent higher priorities. Consider:

1.10.5pts Draw a picture of the final state of this min-heap after an element with value 11 is
inserted. Satisfy the shape invariant first, then restore the order invariant while
maintaining the shape invariant. Draw all branches in your tree clearly so we can
distinguish left branches from right branches.

1.20.5pts Starting from the original min-heap above, draw a picture of the final state of the
min-heap after the element with the minimum value (i.e., with highest priority)
is deleted. Satisfy the shape invariant first, then restore the order invariant while
maintaining the shape invariant.

c© Carnegie Mellon University 2020



15-122 Written Homework 10 Page 2 of 8

1.32.5pts Insert the following values into an initially empty min-heap one at a time in the
order shown. Draw the final state of the min-heap after each insert is completed
and the min-heap is restored back to its proper invariants. Your answer should
show 8 clearly drawn heaps.

27, 23, 40, 25, 7, 26, 44, 22

c© Carnegie Mellon University 2020



15-122 Written Homework 10 Page 3 of 8

1.40.5pts We are given an array A of n integers. Consider the following sorting algorithm:

• Insert every integer from A into a min-heap.
• Repeatedly delete the minimum from the heap, storing the deleted values

back into A from left to right.

What is the worst-case runtime complexity of this sorting algorithm, using big-O
notation? Briefly explain your answer.

O( )

Because:

1.50.5pts You are given a non-empty min-heap. In one sentence, describe precisely where
the maximum value must be located. Do not assume the heap is implemented as
an array — your vocabulary should pertain only to the tree definition of a heap.

1.60.5pts What is the worst-case runtime complexity of finding the maximum in a min-
heap if the min-heap has n elements and is implemented as an array? Why?

O( )

Because the number of values that need to be examined is .

c© Carnegie Mellon University 2020



15-122 Written Homework 10 Page 4 of 8

2. Implementing Priority Queues as Arrays

2.10.5pts Assume a priority queue is stored in an array as discussed in class. Using the
min-heap pictured below, show where each element is stored in the array. You
may not need to use all of the array positions shown below.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

2.21pt Consider a non-empty priority queue of n elements, each with a different prior-
ity. This priority queue is represented using the array implementation of min-
heaps. Give the exact range (inclusive), in terms of n, of array indexes where any
element of lowest priority might occur. You may use mathematical notation or
C0 notation.

c© Carnegie Mellon University 2020



15-122 Written Homework 10 Page 5 of 8

2.31pt Complete the function heap_lowest, which returns (but does not remove) the
element with the lowest priority from a min-heap stored as an array. The function
template below is missing some loop invariants that would be needed to ensure
safety; you don’t have to add these.
You can use helper functions from the published heap.c1 or functions in the
client interface. You shall examine only those elements that might contain the lowest
priority element.

elem heap_lowest(heap* H)
//@requires is_heap(H) && !pq_empty(H);
//@ensures is_heap(H);
{

int index = ;

for (int i = ; i < ; i++) {

if ( ) {

index = i;
}

}
return ;

}

2.41pt Fill in the @assert directive as to support the safety of the implementation of the
function pq_rem. You can find relevant code in file heap.c1 published along the
lecture notes. It removes and returns the element with the highest priority from
a min-heap stored as an array.

elem pq_rem(heap H)
//@requires is_heap(H) && !pq_empty(H);
//@ensures is_heap(H);
{
elem min = H->data[1];
(H->next)--;

if (H->next > 1) {
H->data[1] = H->data[H->next];

//@assert ;

sift_down(H);
}
return min;

}

c© Carnegie Mellon University 2020



15-122 Written Homework 10 Page 6 of 8

3. Using Priority Queues

You are working an exciting desk job as a stock market analyst. You want to be able
to determine the total price increase of the stocks that have seen the highest price
increases over the last day (of course, on a bad day, these might simply be the least
negative price changes). However, since the year is 1983, your Commodore 64 can
only offer up about 30 KB of memory.

Stock reports are delivered to you via a stream_t data type with the following inter-
face:

// typedef _______ stream_t;
typedef struct stock_report report;
struct stock_report {
string company;
int current_pps; // stock price in cents
int old_pps; // previous day’s price per share in cents

};

// Returns true if the data stream is empty
bool stream_empty(stream_t S);
// Retrieve the next stock report from the data stream
report* get_report(stream_t S) /*@requires !stream_empty(S); @*/ ;

A stream of stock reports could be very, very large. Storing all of the reports in an
array won’t cut it — you don’t have enough memory (30 KB isn’t even enough to
store 2000 reports). You’ll need a more clever solution.

Luckily, your cubicle mate Grace just finished a stellar priority queue implementation
with the interface below. You think you should be able to use Grace’s priority queue
to keep track of only the stock reports on the stocks that have increased the most,
discarding the others as necessary.

// Client Interface
// f(x,y) returns true if x is STRICTLY higher priority than y
typedef bool higher_priority_fn(void* x, void* y);

// Library Interface
// typedef ______* pq_t;
pq_t pq_new(int capacity, higher_priority_fn* priority)
/*@requires capacity > 0 && priority != NULL; @*/
/*@ensures \result != NULL; @*/ ;

bool pq_full(pq_t Q) /*@requires Q != NULL; @*/ ;
bool pq_empty(pq_t Q) /*@requires Q != NULL; @*/ ;
void pq_add(pq_t Q, void* x) /*@requires Q != NULL && !pq_full(Q); @*/

/*@requires x != NULL; @*/ ;
void* pq_rem(pq_t Q) /*@requires Q != NULL && !pq_empty(Q); @*/ ;
void* pq_peek(pq_t Q) /*@requires Q != NULL && !pq_empty(Q); @*/ ;

c© Carnegie Mellon University 2020



15-122 Written Homework 10 Page 7 of 8

3.12.5pts Complete the functions client_priority and total_increase below. The func-
tion total_increase returns the sum of the pps increases of the n stocks with
the highest pps increases from the data stream S.

#use <util>

bool client_priority(void* x, void* y)
//@requires x != NULL && \hastag(report*, x);
//@requires y != NULL && \hastag(report*, y);
{
return

;

}

int total_increase(stream_t S, int n)
//@requires 0 < n && n < int_max();
{
pq_t Q = pq_new( );

while (!stream_empty(S)) {
// Put the next stock report into the priority queue

;

// If the priority queue is at capacity, delete the
// report with the smallest pps increase

if ( )

;

}

// Add up the pps increases of everything in the
// priority queue
int total = 0;

while ( ) {

report* r = ;

total += ;

}

return total;
}

c© Carnegie Mellon University 2020



15-122 Written Homework 10 Page 8 of 8

3.21pt Assuming that get_report is a constant-time function and that Grace’s prior-
ity queues are based on the heap data structure, what is the running time of
total_increase(S, n) if the stream S ultimately contains m elements? (Give
an answer in big-O notation.)

O( )

c© Carnegie Mellon University 2020




