
15-122 Programming Homework 4 Page 1 of 9

15-122: Principles of Imperative Computation, Spring 2020

Programming Homework 4: DosLingos

Due: Thursday 13th February, 2020 by 9pm

This week we will do some relatively small exercises centered around searching and sorting
arrays of integers and strings. We compared characters and strings for equality during the
puzzle hunt portion of our �rst programming assignment; Appendix A of this writeup talks
a little big more about string comparison, which is necessary when we think about sorted
arrays of strings.

The code handout for this assignment is on Autolab. The �le README.txt in the code
handout goes over the contents of the handout and explains how to hand the assignment in.
There is a FIVE (5) PENALTY-FREE HANDIN LIMIT. Every additional handin will incur
a small (5%) penalty (even if using a late day). Your score for this assignment will be the
score of your last Autolab submission.

Be aware that only Task 3 will be graded by Autolab when you hand in

your work. You should examine Autolab's output to make sure the other tasks

compile. If you don't check Autolab's outputs and there are compilation errors,

you may end up receiving no credit for the assignment. The other tasks will be
autograded or graded by hand after the assignment deadline. You will need to use the test
cases you write for task 3, contracts, and deliberate programming to ensure correctness of
the other tasks.

c© Carnegie Mellon University 2020

https://autolab.andrew.cmu.edu/courses/15122q-s20/
https://autolab.andrew.cmu.edu/courses/15122q-s20/

15-122 Programming Homework 4 Page 2 of 9

1 DosLingos (Counting Common Words)

The story: You're working for a Natural Language Processing (NLP) startup company
called DosLingos.1 Already, your company has managed to convince thousands of users to
translate material from English to Spanish for free. In a recent experiment, you had users
translate newswire text and you've managed to train your users to recognize words in an
English newspaper. Now you're considering having these same users translate Shakespeare,
and you're not sure how many words your Spanish-speaking users will be able to recognize.

Your job: In this exercise, you will write a function for analyzing the number of tokens
from a text corpus (like the complete works of Shakespeare) that appear (or not) in a user's
vocabulary. The user's expected vocabulary will be represented by a sorted array of strings
vocab that has length v, and we will maintain another integer array, freq, where freq[i]
represents the number of times we have seen vocab[i] in the text corpus so far (where
i ∈ [0, v)).

This is an important pattern, and one that we will see repeatedly throughout the semester
in 15-122: the (sorted) vocabulary words stored in vocab are keys and the frequency counts
stored in freq are values.

The function count_vocab that we will write updates the values � the frequency counts
� based on the text corpus we are analyzing. As an example, consider a text made up not
from Shakespeare but from this tweet by local weatherman Scott Harbaugh:

We would expect count_vocab(vocab,freq,8,"texts/scott_tweet.txt",b) to return
1 (because only one word, �Phil,� is not in our example vocabulary), leave the contents of
vocab unchanged, and update the frequency counts in freq as follows:

1Any resemblance between this scenario and Dr. Luis von Ahn's company DuoLingo (http://www.
duolingo.com) are purely coincidental.

c© Carnegie Mellon University 2020

http://www.duolingo.com
http://www.duolingo.com

15-122 Programming Homework 4 Page 3 of 9

Your data: DosLingos has given you 4 data �les for your project in the texts/ directory:

• news_vocab_sorted.txt - A sorted list of vocabulary words from news text that
DosLingos users are familiar with.

• scott_tweet.txt - Scott Harbaugh's tweet above.

• sonnets.txt - A small test �le: 122 of Shakespeare's sonnets.

• shakespeare.txt - A larger test �le: the complete works of Shakespeare.

You can write more data �les of your own!

Your tools: DosLingos already has a C0 library for reading text �les, converting all letters
to lowercase, and separating out words, provided to you as lib/readfile.c0, which de�nes
a type bundle_t and implements the following functions:

// first call read_words to read in the content of the file
bundle_t read_words(string filename)

You need not understand anything about the type bundle_t other than that you can extract
its underlying string array and the length of that array:

// to determine the length of the array in the string_bundle, use:
int string_bundle_length(bundle_t sb)

// access the array inside of the string_bundle using:
string[] string_bundle_array(bundle_t sb)
//@ensures \length(\result) == string_bundle_length(sb);

Here's an example of these functions being used on Scott Harbaugh's tweet:

� �
% coin -d lib/readfile.c0
--> bundle_t B = read_words("texts/scott_tweet.txt");
B is 0x7047F0 (struct string_bundle_header*)
--> string_bundle_length(B);
6 (int)
--> string[] tweet = string_bundle_array(B);
tweet is 0x704B60 (string[] with 6 elements)
--> tweet[0];
"phil" (string)
--> tweet[5];
"burrow" (string)� �

c© Carnegie Mellon University 2020

15-122 Programming Homework 4 Page 4 of 9

Being connoisseurs of e�cient algorithms, DosLingos has also implemented their own set
of string search algorithms in lib/stringsearch.c0, which you may also �nd useful for
this assignment:

// Linear search
int linsearch(string x, string[] A, int n)
//@requires 0 <= n && n <= \length(A);
//@requires is_sorted(A, 0, n);
/*@ensures (-1 == \result && !is_in(x, A, 0, n))

|| ((0 <= \result && \result < n)
&& string_equal(A[\result], x)); @*/

// Binary search
int binsearch(string x, string[] A, int n)
//@requires 0 <= n && n <= \length(A);
//@requires is_sorted(A, 0, n);
/*@ensures (-1 == \result && !is_in(x, A, 0, n))

|| ((0 <= \result && \result < n)
&& string_equal(A[\result], x)); @*/

The code for this exercise should be put in a �le doslingos.c0. You must include
annotations for the precondition(s), postcondition(s) and loop invariant(s) for each function.
You may include additional annotations for assertions as necessary. You may include any
auxiliary functions you need in the same �le, but you should not include a main() function.
You can include functions from the lib/readfile.c0 and lib/stringsearch.c0 libraries
in your code: the compilation instructions given in README.txt include these libraries.

Task 1 (4 points) Add to doslingos.c0 a de�nition of the function count_vocab:

int count_vocab(string[] vocab, int[] freq, int v,
string corpus,
bool fast)

//@requires v == \length(vocab) && v == \length(freq);
//@requires is_sorted(vocab, 0, v);
//@requires all_distinct(vocab, v);

The function should return the number of occurrences of words in the �le corpus that do
not appear in the array vocab, and should update the frequency counts in freq with the
number of times each word in the vocabulary appears. If a word appears multiple times in
the corpus, you should count each occurrence separately, so a �le containing �ha ha ha LOL
LOL� would cause the frequency count for �ha� to be incremented by 3 and would cause
2 to be returned, assuming LOL was not in the vocabulary. (It should not be an error if

c© Carnegie Mellon University 2020

15-122 Programming Homework 4 Page 5 of 9

this addition causes over�ow. The easiest thing to do is just increment the frequency counts
without regard to over�ow, and you should do that.)

Note that a precondition of count_vocab is that the vocab must be sorted, a fact you
should exploit. Your function should use the linear search algorithm when fast is set to
false and it should use the binary search algorithm when fast is true. You can implement

this choice with a simple if statement that decides which function to call � duplicating a lot

of code is unnecessary and unhelpful.

The precondition all_distinct(vocab, v) enforces that there are no duplicate words.
You DO NOT have to write this function or include this part of the precondition; we promise
not to test your code on any sorted vocabularies with duplicate words. However, you may
write and include an all_distinct precondition if you want to. If you write it, include it
in the same �le doslingos.c0.

2 Sorting by Frequency

To really utilize our frequency counts, it is useful to be able to take our vocabulary list and
frequency counts and re-arrange both arrays so that the frequency counts are sorted.

You'll want to adapt one of the sorting functions we discussed in lecture for this task (in
other words, it's okay to start with the lecture code and modify it). You'll need to modify
the lecture code so that it sorts the two arrays together. In the example above, when we
move 15 from index 1 to index 7 in freq, we also have to move �ha� from index 1 to index
7 in vocab. In principle, it's not too hard to adapt an integer array sorting algorithm to an
algorithm that sorts two arrays: whenever you swap two elements in the array you're sorting
(freq), make sure the same swap is performed on the other array (vocab).

For full credit on this task, you will need to give a sorting algorithm that is fast and
stable. By fast, we mean that it will be O(n log n) on the inputs we will give it. By stable, we
mean that the relative positions of equivalent elements (words with the same frequencies) in
the inputs are preserved in the output. The quicksort algorithm we discussed in class would
meet the fast criteria: while it is O(n2) in the worst case, this behavior won't be triggered
by our frequency counts in our text corpus. However, the quicksort algorithm from lecture
isn't stable. If you straightforwardly adapt quicksort, the words �burrow�, �list�, �out�, and

c© Carnegie Mellon University 2020

15-122 Programming Homework 4 Page 6 of 9

�winter� are likely to end up in a di�erent order, resulting in an output that doesn't match
the example above. (Selection sort is neither fast nor stable.)

The easiest way to make a fast, stable sort is probably to modify mergesort, which we
talked about brie�y in class; code for mergesort is published alongside the lecture notes on
divide-and-conquer sorting. You're also welcome to try and implement a stable partition
function, which will make quicksort stable.

Task 2 (7 points) Add to doslingos.c0 a de�nition of the function sort_by_freq:

void sort_by_freq(string[] vocab, int[] freq, int v)
//@requires v == \length(vocab) && v == \length(freq);
//@ensures is_sorted_int(freq, 0, v);

You can adapt any code from lecture, but cite the source in a comment. Remember that the
arrayutil.c0 you're using for this assignment is for dealing with string arrays, not integer
arrays, so most lecture code won't compile at �rst. It's okay to remove contracts that depend
on the lecture version of arrayutil.c0 from your sort, but at least leave enough contracts
to reason about the safety of your code.

3 Unit testing

The functions you wrote in the �rst two tasks could fail in many ways. On certain inputs,
they might fail internal assertions or postconditions (contract failures), and on other inputs
they might happily return invalid results (contract exploits).

Task 3 (8 points) In �le doslingos-test.c0, write test cases that test your implemen-
tation of your �rst two tasks. The autograder will assign you a grade based on the ability
of your unit tests to pass when given a correct implementation and fail when given various
buggy implementations. Your tests must still be safe: it should not be possible for your code
to make an array access out-of-bounds when -d is turned on.

You do not need to catch all our bugs to get full points, but catching additional tests will
be re�ected on the scoreboard.

Because you cannot access all of our buggy implementations except via the autograder,
your grade on this task will be given as soon as you hand in your work. We'll run tests with
contracts (-d) enabled, so the largest text �les should not be used in your unit tests.

You may �nd it useful to use the functions provided in C0's parse library. These func-
tions provide a convenient way of creating arrays with speci�c contents. It's not necessary
to use this library to test your code, but you may �nd that writing

string[] A = parse_tokens("I love 15-122");

is more convenient than writing

c© Carnegie Mellon University 2020

15-122 Programming Homework 4 Page 7 of 9

string[] A = alloc_array(string, 3);
A[0] = "I";
A[1] = "love";
A[2] = "15-122";

Testing your tests

You can test your functions with your own implementation, and with an awful and badly
broken implementation, by running the following commands:� �
% cc0 -d -w -o doslingos lib/*.c0 doslingos.c0 doslingos-test.c0
% ./doslingos
% cc0 -d -w -o doslingos-bad lib/*.c0 doslingos-awful.c0 doslingos-test.c0
% ./doslingos-bad� �
Both tests should compile and run, but the last invocation of ./a.out should trigger a
assertion to fail if your tests are more than minimal. Even if your test cases fail on the awful

implementation, they still might not be particularly useful test cases.

4 Analyzing the results

Once you've carefully tested your doslingos.c0 implementations, you have a powerful set
of tools for analyzing your text corpus. For the last part of this assignment, you'll run such
an analysis. It is a violation of the academic integrity policy of this course to compare the

answers in this section with other students.

Task 4 (6 points) Create a �le analysis.c0 containing a main() function. We will
compile and run this �le as follows:� �
% cc0 -w -o analysis lib/*.c0 doslingos.c0 analysis.c0
% ./analysis texts/news_vocab_sorted.txt texts/shakespeare.txt� �
Where the �rst argument if ./analysis is the �lename for the (sorted) dictionary and the
second argument is the text corpus. See echo.c0 for an example of how to handle command-
line arguments in C0. Note that, to receive credit, your implementation shall work for an
arbitrary dictionary and an arbitrary corpus � possibly much larger than the above example
� passed as parameters as above.

Your analysis should use the sorted word list to compute and print out human-readable
answers to the following questions:

• What are the four most common in-dictionary words in the text corpus, and what are
their frequencies? (Ties, if they occur, can be broken in any way you want.)

• What in-dictionary words appear exactly 82 times in the text corpus?

• Among the in-dictionary words in the text corpus, what are the two smallest frequencies
that do not occur? (In the example on the top of page 2, the answer would be 3 and
5.)

c© Carnegie Mellon University 2020

15-122 Programming Homework 4 Page 8 of 9

• How many times are there fewer words with frequency f than there are with frequency
f + 1? (The usual pattern is that, there are lots of words that appear 1 time, fewer
or the same number of words that appear 2 times, and so on. How many times is this
pattern violated?)

Your code only needs to work on reasonable inputs. Speci�cally, don't worry about
checking that the �rst argument is a �le that is actually sorted. If you use the tools you
developed in this assignment correctly, you should be able to compute the answers from
scratch in a couple of seconds. We don't need the output of your analysis to obey a strict
format, but here's the rough format you should follow:� �
The four most common words in the text corpus are:
1. REDACTED (appears REDACTED times)
2. REDACTED (appears REDACTED times)
3. REDACTED (appears REDACTED times)
4. REDACTED (appears REDACTED times)

These words appeared 82 times in the text corpus: REDACTED

There are no words with frequency REDACTED or REDACTED in the corpus.

In this corpus, there are REDACTED times that a frequency f has
strictly fewer words at that frequency than frequency f+1.� �

c© Carnegie Mellon University 2020

15-122 Programming Homework 4 Page 9 of 9

A Appendix: String Processing Overview

In the C0 language, a string is a sequence of characters. Unlike languages like C, a string
is not the same as an array of characters. One of the functions in the string library (which
you include in your code by #use <string>) is string_compare:

int string_compare(string a, string b)
//@ensures -1 <= \result && \result <= 1;

The string_compare function performs a lexicographic comparison of two strings, which
is essentially the ordering used in a dictionary, but with character comparisons being based
on the characters' ASCII codes, not just alphabetical. We can convert between the char
type and the integer ASCII codes with the char_ord(c) and char_chr(i) functions, also
available in the string library. For this reason, the ordering used here is sometimes whim-
sically referred to as �ASCIIbetical� order. A table of all the ASCII codes is shown in the
�gure below. The ASCII value for ’0’ is 0x30 (48 in decimal), the ASCII code for ’A’ is
0x41 (65 in decimal) and the ASCII code for ’a’ is 0x61 (97 in decimal). Note that ASCII
codes are set up so the character ’A’ is �less than� the character ’B’ which is less than
the character ’C’ and so on, so the �ASCIIbetical� order coincides roughly with ordinary
alphabetical order.

Figure 1: The ASCII table

c© Carnegie Mellon University 2020

	DosLingos (Counting Common Words)
	Sorting by Frequency
	Unit testing
	Analyzing the results
	Appendix: String Processing Overview

