
15-122 Programming Homework 8 Page 1 of 7

15-122: Principles of Imperative Computation, Spring 2020

Programming Homework 8: Ropes

Due: Thursday 26th March, 2020 by 9pm

For the programming portion of this week's homework, you will implement the data structure
of ropes, which provide constant-time string concatenation.

The code handout for this assignment is on Autolab. The �le README.txt in the code
handout goes over the contents of the handout and explains how to hand the assignment
in. There is a TEN (10) PENALTY-FREE HANDIN LIMIT. Every additional handin will
incur a small (5%) penalty (even if using a late day). Your score for this assignment will be
the score of your last Autolab submission.

For this assignment, the last thing the autograder will do is attempt to run your �le
rope-test.c0 against a few good data structures and many bad ones. Putting as many
test cases as you can think of in this �le will not only help you debug your code, but give
you a chance to see how your testing stacks up against a large test suite. (Unless you're a
highly diligent tester, it's likely you'll see many TEST FAILED! messages from this phase,
but it doesn't a�ect your score, only your position on the scoreboard.)

1 Introduction to Ropes

The most obvious implementation of a string is as an array of characters. However, this
representation of strings � which is also the way that the C0 compiler implements the
string data type � is particularly ine�cient at handling string concatenation. Running
string_join in C0 on two strings of size n and m takes time in O(n+m).

A rope is a tree-like data structure that provides a more e�cient way of concatenating
strings. A rope is a pointer to a rope data structure de�ned in C0 as follows:

typedef struct rope_node rope;
struct rope_node {
int len;
rope* left;
rope* right;
string data;

};

c© Carnegie Mellon University 2020

https://autolab.andrew.cmu.edu/courses/15122q-s20/
https://autolab.andrew.cmu.edu/courses/15122q-s20/


15-122 Programming Homework 8 Page 2 of 7

A valid rope must be either NULL, a leaf, or a non-leaf. More speci�cally:

• NULL is a valid rope. It represents the empty string.

• A rope is a leaf if it is non-NULL, has a non-empty string data �eld, has left and right
�elds that are both NULL, and has a strictly positive len equal to the length of the
string in the data �eld (according to the C0 string library function string_length).

• A rope is a non-leaf if it has non-NULL left and right �elds, both of which are valid
ropes, and if it has a len �eld equal to the sum of the len �elds of its children. The
data �eld of a non-leaf is unspeci�ed. We'll call these non-leaves concatenation nodes.

This is one of many ropes that represents the 15-character string "happy birthday!":

Note that where we indicate Xes in the data �eld, any contents would be allowed and we
would still have a valid rope. We can also represent the same structure using a short-hand
notation that illustrates the two di�erent types of nodes, leaf nodes and concatenation nodes:

Task 1 (4 points) In the �le rope.c1, write a data structure invariant bool is_rope(rope* R).
For full credit, you should ensure that your data structure invariant terminates on all inputs.
HINT: If your circularity check requires more than 2-6 extra lines, you're doing it wrong.

Implementing the optional function rope_print and using it in your tests may save you
debugging time.

2 Implementing Ropes

A full interface for ropes would presumably need to mimic the entire C0 string library. In
this section, we'll just be implementing a limited subset of this library.

c© Carnegie Mellon University 2020



15-122 Programming Homework 8 Page 3 of 7

// typedef _______* rope_t;
int rope_length(rope_t R)
/*@ensures \result >= 0; @*/ ;

rope_t rope_join(rope_t R, rope_t S)
/*@requires rope_length(R) <= int_max() - rope_length(S); @*/ ;

char rope_charat(rope_t R, int i)
/*@requires 0 <= i && i < rope_length(R); @*/ ;

rope_t rope_sub(rope_t R, int lo, int hi)
/*@requires 0 <= lo && lo <= hi && hi <= rope_length(R); @*/ ;

Functionally, these four functions should do the same thing as the similarly-named function
in the C0 string library. We'll also implement two functions for converting between C0
strings and our data type of ropes.

rope_t rope_new(string s);
string rope_tostring(rope_t R);

When we talk about the big-O behavior of rope operations, we assume for simplicity the
rope's leaves contain strings that are smaller than some small constant, which means that
all operations on C0 strings can be treated as constant-time operations.

Task 2 (5 points) Constant time operations.

In the �le rope.c1, implement theO(1) functions rope_new, rope_length, and rope_join.

The rope_new function takes any C0 string and returns a rope without any concatenation
nodes. The rope_join function is able to work in constant time because, at most, it has to
allocate a single concatenation node:

In the example above, the client of the rope library can continue using the rope rep-
resenting "totally" even though the allocated memory for that rope is a part of the
rope representing "totallyefficient". This structure sharing between di�erent ropes
means that, while ropes are a data structure that we can treat like a tree, the mem-
ory representation may not actually be a tree. Here's another example: if R1 is rope for
"totally" above and R2 is the rope for "efficient" above, then executing the expression
rope_join(rope_join(R1, R2), rope_join(rope_new(", "), R1)) will produce the
following structure in memory:

c© Carnegie Mellon University 2020



15-122 Programming Homework 8 Page 4 of 7

Structure sharing for ropes only works because none of the rope interface functions allow us
to modify ropes after they have been created. By sharing structure, we can make very very
big strings without allocating much memory, and this is one reason it was necessary to add
the precondition checking for over�ow to rope_join.

Task 3 (4 points) Simple recursive operations.

In the �le rope.c1, implement the recursive functions rope_charat and rope_tostring.

Your implementation of rope_charat should take, in the worst case, time proportional
to the height of the rope. If we kept ropes balanced, this would mean that rope_charat
would take time in O(log n), where n is the length of the rope as reported by rope_length.
We will not, however, implement balancing in this assignment, and none of the code you
write in this section should modify the structure of existing ropes in any way.

The rope_tostring function returns the string that a rope represents. There's a way
to implement this function so that its running time is in O(n), but this would be overkill.
Just implement the most natural recursive solution possible, which uses string_join.

Sharing between ropes gets more interesting once we start considering the rope_sub
function. The C0 library function string_sub(s,lo,hi) returns the segment of the string
s from index lo (inclusive) to index hi (exclusive). The function rope_submust do the same
thing, without changing the structure of the original rope in any way, while also maximizing
sharing between the old rope and the new rope and only allocating a new node when it is
impossible to use the entire string represented by an existing rope.

c© Carnegie Mellon University 2020



15-122 Programming Homework 8 Page 5 of 7

Here are some examples, where we have R as the rope representing "totallyefficient"
from the previous page.

After running rope_t R3 = rope_sub(R, 1, 16);

After running rope_t R3 = rope_sub(R, 1, 11);

After running rope_t R3 = rope_sub(R, 2, 11);

Running rope_sub(R,0,1) and rope_sub(R,7,16) should not cause any new memory
to be allocated, because these substrings are captured by subtrees of the original rope.
Running rope_sub(R,2,3) must return a newly-allocated leaf node containing the string
"t".

Task 4 (7 points) In the �le rope.c1, implement the recursive function rope_sub. With-
out changing the structure of the original rope in any way, this function should minimize
memory allocation by sharing as much of the original rope as possible.

HINT: in your recursive function, try to �rst identify all the cases where it is possible to
return immediately without any new allocation. What cases are left?

c© Carnegie Mellon University 2020



15-122 Programming Homework 8 Page 6 of 7

3 Reducing Memory Usage

The rope_join and rope_sub functions use sharing to reduce memory usage, but we spec-
i�ed that they should not change the structure of existing ropes. For this task, you will
write a memory-reduction procedure that changes the structure of existing ropes to conserve
memory without changing the strings that those ropes represent.

Your memory-reduction procedure will use a hashtable-based dictionary. When given
a rope, you should look up that rope in the dictionary to see if an equivalent rope (one
representing the same string) already exists. If so, your memory-reduction procedure can
just return that already-stored rope in place of the rope you were given.

If your memory-reduction procedure doesn't �nd the rope already in the dictionary, it
should recursively call itself, �rst on the left sub-rope, and then on the right sub-rope. Then,
without allocating any additional memory, you can replace the original left and right sub-
ropes with the results of calling the memory-reduction procedure on them. (It's always okay
to replace a rope with another rope that represents the same string.) Now you have a rope
with two sharing-maximized sub-ropes; this new rope should be added to the dictionary for
future use.

Task 5 (5 points) In the �le rope.c1, implement the function rope_reduce using a
helper function. This function takes an array A of ropes, allocates a dictionary, and runs the
memory-reduction procedure on each of the ropes in the array. Ropes and sub-ropes stored
in lower indices should remain in the dictionary and be re-used when processing ropes and
sub-ropes stored in higher indices.

More examples of what rope_reduce does can be found on the next page. You'll need to
write functions to initialize the client interface of generic hashtable-based dictionaries. The
simplest way to write the key_hash_fn and key_equiv_fn functions involves repeatedly
using rope_charat. That implementation will work �ne for this assignment, but it is
possible to create a more e�cient version.

c© Carnegie Mellon University 2020



15-122 Programming Homework 8 Page 7 of 7

More examples of how we expect rope_reduce to work:

c© Carnegie Mellon University 2020


	Introduction to Ropes
	Implementing Ropes
	Reducing Memory Usage

