
15-122: Principles of Imperative Computation, Spring 2020

Written Homework 11

Due on Gradescope: Thursday 16th April, 2020 by 9pm

Name:

Andrew ID:

Section:

This written homework provides practice with some introductory C concepts.

Preparing your Submission You can prepare your submission with any PDF editor that
you like. Here are a few that prior-semester students recommended:

• PDFescape or DocHub, two web-based PDF editors that work from anywhere.
• Preview, the Mac’s PDF viewer.
• Acrobat Pro, installed on all non-CS cluster machines, works on many platforms.
• iAnnotate works on any iOS and Android mobile device.

There are many more — use whatever works best for you. If you’d rather not edit a PDF,
you can always print this homework, write your answers neatly by hand, and scan it into
a PDF file — we don’t recommend this option, though.

Submitting your Work Once you are done, submit this assignment on Gradescope. Al-
ways check it was correctly uploaded. You have unlimited submissions.

Question: 1 2 3 Total

Points: 3.5 4.5 4 12

Score:

https://gradescope.com/courses/76833
http://www.pdfescape.com
https://dochub.com/
https://support.apple.com/en-us/HT201740
https://www.cmu.edu/computing/software/all/
https://www.iannotate.com/
https://gradescope.com/courses/76833

15-122 Written Homework 11 Page 1 of 6

1.3.5pts Contracts in C

The code below is taken from the lecture notes on binary search trees in C0. This is
also legal C code (assuming all the right definitions are available), but the contracts
will not be checked in C.

elem tree_lookup(tree* T, elem x)
//@requires is_tree(T) && x != NULL;
//@ensures \result == NULL || elem_compare(\result, x) == 0;
{
if (T == NULL) return NULL;
int cmp = elem_compare(x, T->data);
if (cmp == 0) {
return T->data;

} else if (cmp < 0) {
return tree_lookup(T->left, x);

} else {
//@assert cmp > 0;
return tree_lookup(T->right, x);

}
}

elem set_lookup(set* B, elem x)
//@requires is_set(B) && x != NULL;
//@ensures \result == NULL || elem_compare(\result, x) == 0;
{
return tree_lookup(B->root, x);

}

Rewrite the function in the box on the next page as follows:

• Insert assignment statements so that all return statements have the form
return result. (In other words, use the variable result, defined on the next
page, to hold the return value for all cases and use this variable in your postcon-
dition.)

• Insert any necessary C contracts so that, when compiled with the flag -DDEBUG,
contracts will be checked as they would be in C0 with the flag -d.

Do not simplify any contracts even if it is immediately obvious from the context that
you could do so. You may omit the C0 contracts (lines beginning //@) even though in
practice we might like to keep them.

c© Carnegie Mellon University 2020

15-122 Written Homework 11 Page 2 of 6

elem tree_lookup(tree* T, elem x)

elem result;

}

elem set_lookup(set* B, elem x)

elem result;

}

c© Carnegie Mellon University 2020

15-122 Written Homework 11 Page 3 of 6

2.4.5pts Allocating and Freeing Memory in C

Here is a leaky C program that works with NULL-terminated linked lists. We’ve
omitted the code for print_list because it can’t leak any memory. Contracts have
been omitted for the sake of space.

31 typedef struct list_node list;
32 struct list_node {
33 int data;
34 list* next;
35 };
36

37 void free_list(list* L)
38 {
39 list* current = L;
40

41 while (current != NULL)
42 {
43 list* next = current->next;
44 free(current);
45 current = next;
46 }
47 return;
48 }
49

50 void sum(list* L)
51 {
52 list* sum = xmalloc(sizeof(list));
53 sum->data = 0;
54 sum->next = NULL;
55 list* current = L;
56

57 while (current != NULL)
58 {
59 sum->data += current->data;
60 current = current->next;
61 }
62

63 L->data = sum->data;
64 L->next = NULL;
65

66 return;
67 }

c© Carnegie Mellon University 2020

15-122 Written Homework 11 Page 4 of 6

69 int main()
70 {
71 list* current = NULL;
72 for (int i=0 ; i<10 ; i++)
73 {
74 ASSERT(0 <= i);
75 list* new = xmalloc(sizeof(list));
76 new->data = i;
77 new->next = current;
78 current = new;
79 }
80 printf("Initial list: ");
81 print_list(current);
82 sum(current);
83 printf("Summed list: ");
84 print_list(current);
85

86 return 0;
87 }

In the table below, give the line number of each line that leaks memory (you may not
need all rows). A line is considered to leak memory if, as a result of executing it, some
allocated memory has not been freed, and no further references to that memory are
possible. Returning from the main function without deallocating everything that was
allocated is considered a leak (even though the operating system will clean it up).

Indicate how to fix the leak(s) by writing any extra code that needs to be added, with
the line numbers between which it should be inserted. Your changes should not alter
the behavior of the program other than fixing the leaks.

Line
number
of leak

Code that fixes it Where to
insert it

c© Carnegie Mellon University 2020

15-122 Written Homework 11 Page 5 of 6

3.4pts Pass by Reference and Arrays versus Pointers in C

The following little program allocates and initializes an array of numbers, then calls
a function f on two of its elements. Rewrite these functions in the box below so that
it has the same behavior, uses the same variables at any point, but doesn’t use the
pointer arithmetic notation. You may not insert additional instructions.

#include <stdlib.h>
#include <stdio.h>
#include "lib/xalloc.h"
#include "lib/contracts.h"

void f(char *x, char *y); // Code omitted

char *mk_char_array(size_t n) {
return xmalloc(sizeof(char) * n);

}

int main() {
char *A = mk_char_array(110);
for (int i = 0 ; i < 10 ; i++) {
ASSERT(0 <= i);

*(A + i) = 42 - i;
}
char *TMP = A+3;
ASSERT(*(A+2) == 40);
ASSERT(*(TMP+7) == 32);
f(A+2, A+7);
ASSERT(*(TMP+-1) == 32);
ASSERT(*(A+4) == 40);

printf("All tests passed.\n");
free(A);
return 0;

}

c© Carnegie Mellon University 2020

15-122 Written Homework 11 Page 6 of 6

char *mk_char_array(size_t n) {

}

int main() {

}

c© Carnegie Mellon University 2020

