
15-122: Principles of Imperative Computation, Spring 2020

Written Homework 12

Due on Gradescope: Thursday 23rd April, 2020 by 9pm

Name:

Andrew ID:

Section:

This written homework provides practice with C features such as pointer arithmetic, un-
defined behaviors and casting.

Preparing your Submission You can prepare your submission with any PDF editor that
you like. Here are a few that prior-semester students recommended:

• PDFescape or DocHub, two web-based PDF editors that work from anywhere.
• Preview, the Mac’s PDF viewer.
• Acrobat Pro, installed on all non-CS cluster machines, works on many platforms.
• iAnnotate works on any iOS and Android mobile device.

There are many more — use whatever works best for you. If you’d rather not edit a PDF,
you can always print this homework, write your answers neatly by hand, and scan it into
a PDF file — we don’t recommend this option, though.

Submitting your Work Once you are done, submit this assignment on Gradescope. Al-
ways check it was correctly uploaded. You have unlimited submissions.

Question: 1 2 3 Total

Points: 4 3 5 12

Score:

https://gradescope.com/courses/76833
http://www.pdfescape.com
https://dochub.com/
https://support.apple.com/en-us/HT201740
https://www.cmu.edu/computing/software/all/
https://www.iannotate.com/
https://gradescope.com/courses/76833


15-122 Written Homework 12 Page 1 of 8

1. Pass by Reference Using C

At various points in our C0 programming experience, we had to use somewhat awk-
ward workarounds to deal with functions that need to return more than one value.
Stack-allocated data structures and the address-of operator (&) in C give us a new way
of dealing with this issue.

Sometimes, a function needs to be able to both 1) signal whether it can return a result,
and 2) return that result if it is able to. Consider the following function parse_string
that attempts to parse a string into an integer:
bool parse(char *x, int *i); // Returns true iff parse succeeds

void parse_string(char *x) {
REQUIRES(x != NULL);
int *i = xmalloc(sizeof(int));
if (parse(x, i))
printf("Success: %d.\n", *i);

else
printf("Failure.\n");

free(i);
return;

}

The function parse_string relies on parse, a function which both sets *i to an in-
teger equivalent to the integer pattern in *x (if possible) and also returns a boolean
value of true if the parse succeeds, or false otherwise.

1.12pts Using the address-of operator, rewrite the body of the parse_string function so
that it does not heap-allocate, free, or leak any memory on the heap. You may
assume parse has been implemented (its prototype is given above).

void parse_string(char *x) {
REQUIRES(x != NULL);

return;
}

c© Carnegie Mellon University 2020



15-122 Written Homework 12 Page 2 of 8

1.22pts In both C and C0, multiple values can be ‘returned’ by bundling them in a struct:

struct bundle {
int part1;
int part2;

};

struct bundle *split_int(int p) {
struct bundle *A = xmalloc(sizeof(struct bundle));
A->part1 = p>=0 ? 1 : -1; // first value to be returned
A->part2 = abs(p); // second value to be returned
return A; // return both values together as a struct

}

int main() {
...
struct bundle *B = split_int(-42);
int sign = B->part1;
int value = B->part2;
free(B);
...

}

Complete the declaration of the function split_int, as well as the snippet of
main, to avoid heap-allocating, freeing, or leaking any memory on the heap. The
rest of the code (...) should continue to behave exactly as it did before.

void split_int( , int p) {

A->part1 = p>=0 ? 1 : -1;
A->part2 = abs(p);
return;

}

int main() {
...
struct bundle B;

split_int( , -42);

int sign = ;

int value = ;

...
}

c© Carnegie Mellon University 2020



15-122 Written Homework 12 Page 3 of 8

2. C Program Behavior

Each of the following snippets of C code contains one or more errors. Briefly explain
what is conceptually wrong with each example. No credit will be given if you simply
copy error messages from the compiler, the runtime system, or valgrind. Of course
you are encouraged to use these tools to help you understand the problems.

2.10.5pts
#include <stdio.h>
#include <string.h>
int main() {
char *w;
strcpy(w,"C programming"); // copy string into w
printf("%s\n", w);
return 0;

}

2.20.5pts
#include <stdlib.h>
#include "lib/xalloc.h"
#include "lib/contracts.h"

int main() {
int* A = xmalloc(sizeof(int) * 10);
for (int i = 1 ; i < 10 ; i++) {
ASSERT(1 <= i);

*(A + i) = i;
}
free(A+1);
return 0;

}

c© Carnegie Mellon University 2020



15-122 Written Homework 12 Page 4 of 8

2.30.5pts #include <stdlib.h>
#include <stdio.h>
#include "lib/xalloc.h"
#include "lib/contracts.h"

int main() {
int* A = xmalloc(sizeof(int) * 10);
printf("Before: %d\n", A[0]);
for (int i = 0 ; i < 10 ; i++) {
ASSERT(0 <= i);
A[i] = i;

}
printf("After: %d\n", A[0]);
free(A);
return 0;

}

2.40.5pts #include <stdlib.h>
#include <stdio.h>
#include "lib/xalloc.h"
#include "lib/contracts.h"

int main() {
int* A = xmalloc(sizeof(int) * 10);
int* B = A+3;
for (int i = 0 ; i < 10 ; i++) {
ASSERT(0 <= i);
A[i] = i;

}
free(A);
printf("B: %d\n", *B);
return 0;

}

c© Carnegie Mellon University 2020



15-122 Written Homework 12 Page 5 of 8

2.50.5pts
#include "lib/contracts.h"

int oadd(int x, int y) {
int result = x + y;
if (x > 0 && y > 0) ASSERT(result > 0);
if (x < 0 && y < 0) ASSERT(result < 0);
return result;

}

// The omitted main function calls oadd

2.60.5pts
#include <stdio.h>
int main() {
printf("DAVE: Open the pod bay doors please, HAL\n");
char* hal = "I’m sorry Dave, I’m afraid I can’t do that.";
printf("HAL: %s\n", hal);
if (*hal = ’I’)
printf("DAVE: Hello, HAL? Do you read me?\n");

else
printf("DAVE: What’s the problem?\n");

return 0;
}

c© Carnegie Mellon University 2020



15-122 Written Homework 12 Page 6 of 8

3. Integer Types

3.12pts Suppose that we are working with the usual 2’s complement implementation of
unsigned and signed char (8 bits, one byte), short (16 bits, two bytes) and int
(32 bits, four bytes).
We begin with the following declarations:

signed char the_char = -7;
unsigned char un_char_1 = 248;
unsigned char un_char_2 = 5;
int the_int = -247;

Fill in the table below. In the third column, always use two hex digits to represent
a char, four hex digits to represent a short, and eight hex digits to represent an
int. You might find these numbers useful: 28 = 256, 216 = 65536 and 232 =
4294967296.
Most, but not all, of these answers can be derived from the lecture notes. If you
can’t find an answer from the lecture notes, you can look at online C references
or just compile some code.

C expression Decimal value Hexadecimal

the_char -7 0xF9

(unsigned char) the_char 249 0xF9

(int) the_char -7 0xFFFFFFF9

un_char_1 248

(int)(signed char)un_char_1

(int)(unsigned int)un_char_1

un_char_2 5 0x05

(int)(signed char)un_char_2

(int)(unsigned int)un_char_2

the_int -247

(unsigned int)the_int

(char)the_int

(short)the_int

(unsigned short)the_int

c© Carnegie Mellon University 2020



15-122 Written Homework 12 Page 7 of 8

3.22pts For this question, assume that char is a 1-byte signed integer type and that int
is a 4-byte signed integer type.
Write the C function condense which takes a char array of length 4 and packs it
into a single int. We want the 0th character aligned at the least significant byte,
and the 3rd character aligned at the most significant byte. For example, given
F = {1, 2, -1, 4}, condense(F) should return 0x04FF0201.
For full credit,

• Make all casts explicit.
• Do not cast (or otherwise convert types) directly between signed and un-

signed types of different sizes.
• Do not rely on the endianness1 of your machine. For example, the following

code is incorrect:

int condense(char* F) { return *((int*) F); }

• Make sure your solution works for char arrays containing negative values.
• Write code which is clear and straightforward.

int condense(char *F) {

}

1“Endianness” refers to the natural storage order of bytes for a particular hardware architecture; you
can read about it on Wikipedia, and don’t forget to read Gulliver’s Travels in your no doubt copious spare
time.

c© Carnegie Mellon University 2020



15-122 Written Homework 12 Page 8 of 8

3.31pt Suppose we’ve defined the following functions:

int fib(int n); // returns the nth fibonacci number
int cat(int n); // returns the nth catalan number
int las(int n); // returns the nth look-and-say number

Complete the code below such that it will print

2 3 5 0 1 1
5 14 42 1 1 2
1211 111221 312211 1 11 21

(Hint: The typedef on the first line should define the type int2int_fn. This
type should match the type of a function such as fib, cat, or las.)

typedef ;

void map_print(int2int_fn* f, int* A, size_t n) {
for (size_t i = 0; i < n; i++) {

int x = ;

printf("%d ", x);
}
printf("\n");

}

int main() {
int A[6] = {3, 4, 5, 0, 1, 2};

map_print( , A, 6);

map_print( , A, 6);

map_print( , A, 6);

return 0;
}

c© Carnegie Mellon University 2020




