
15-122: Principles of Imperative Computation Spring 2020

Lab 3: Loopty-loopty Loop Thursday January 23rd

Collaboration: In lab, we encourage collaboration and discussion as you work through the prob-

lems. These activities, like recitation, are meant to get you to review what we've learned, look

at problems from a di�erent perspective and allow you to ask questions about topics you don't

understand. We encourage discussing problems with your neighbors as you work through this lab!

Setup: Copy the lab code from our public directory to your private directory:

% cd private/15122
% cp -R /afs/andrew/course/15/122/misc/lab03 .
% cd lab03

You should write your code for part (2.b) in a �le, consecutive.c0, in the directory lab03. For
(3.b), use palindrome.c0 in the same directory.

Grading: Work through (1.a) and (2.a) as a group. Finish (2.b) for lab credit. Finish (3.a) and

(3.b) for extra credit. Show your TA your loop invariants and how you used them in your code.

Reasoning about reversing an array of integers

Important! Speci�cation func-

tions are often ine�cient, so don't

use them in the actual code. Only

use them inside contracts!

You will be constructing loop invariants for a function (which

we wrote for you) that reverses an array. As you de�ne these

loop invariants, take care to ensure both the safety of any array

accesses as well as the correctness of the function itself.

(1.a) You will need to use the speci�cation function is_reversed in your loop invariants. Remem-

ber, a speci�cation function is for use in contracts to make sure the function is correct.

Here is the function header of is_reversed:

bool is_reversed(int[] first, int[] last, int i, int n)
//@requires 0 <= n && n == \length(first) && n == \length(last);
//@requires 0 <= i && i <= n;

This function returns true if the �rst i numbers in the array first are the reverse of the last

i numbers of the array last. Now, using this speci�cation function, �ll in the loop invariants

for the function reverse below, which reverses an array of integers.

Hint: Look at how we use is_reversed inside the //@ensures clause, and make sure that

when the loop terminates, you can prove that this postcondition holds.

1 int[] reverse(int[] A, int n)
2 //@requires n == \length(A);
3 //@ensures is_reversed(A, \result, n, n);
4 {
5 int[] B = alloc_array(int, n);
6 for(int i = 0; i < n; i++)
7 //@loop_invariant ; // SAFETY
8 //@loop_invariant ; // CORRECTNESS
9 {

10 B[n - i - 1] = A[i];
11 }
12 return B;
13 }

1pt



Improving an already existing algorithm

The TAs have been tasked by Iliano to write some c0 code which takes an array of integers and sees

how many consecutive pairs of equal numbers there are in the array. They were given the following

examples:
1 5 4 4 2 1 1 has 2 consecutive pairs: (4,4) and (1,1)

2 1 1 1 1 2 0 has 3 consecutive pairs: (1,1) three times

6 4 5 4 5 4 5 has 0 consecutive pairs

The best solution the TAs could come up with involved an ine�cient algorithm using two for loops,

one within the other. As you will see later on in the course, this makes their code run very slowly

for large arrays. They are pretty sure it can be done with just one loop, but they need your help!

(2.a) They've put their algorithm inside a function aptly named num_consecutive_trash(A, n).
You can assume that it is correct (they wrote good test cases). One thing to note is that n
can be less than the length of A if you just want to check the �rst n items of A for pairs.

Now, using num_consecutive_trash as a speci�cation function, complete the loop de�nition

for the faster algorithm in the function below, including the bounds on i as well as any loop

invariants needed. Again, use one invariant for safety and one for correctness.

1 int num_consecutive_ints(int[] A, int n)
2 //@requires 0 <= n && n <= \length(A);
3 //@ensures \result == num_consecutive_trash(A, n);
4 {
5 int count = 0;
6 for (int i = ; i < ; i++)
7 //@loop_invariant ;
8 //@loop_invariant ;
9 {

10 ...
11 }
12 return ;
13 }

(2.b) Now open up consecutive.c0 and �ll in the loop body there. Remember, use the loop

invariants to guide the code you write. When ready, test your implementation as described

next.

Note: use the provided to_arr function to help with your testing. It takes an integer and

converts it to an array of integers based on the number's digits.

� �
% coin -d consecutive.c0
--> num_consecutive_ints(to_arr(1544211), 7);
2 (int)
--> num_consecutive_ints(to_arr(2111120), 7);
3 (int)
--> num_consecutive_ints(to_arr(6454545), 7);
0 (int)� �



You can test your code by running cc0 -d -x consecutive.c0 test-consecutive.c0
Make sure your code passes this test to get credit!2pt

Error: out of memory

Uh-oh! The 15-122 supercomputer has just run out of memory! Now how will the TAs tackle their

next challenge? For some extra credit, see if you can help them out!

An int array is palindrome if reading it from left to right and from right to left yields the same

numbers. For example, [1, 2, 3, 2, 1] is palindrome, but [1, 2, 3, 4, 2] is not. For years, 15-122 has been
determining palindromes by checking if A and reverse(A, n) have the same contents. However,

this requires allocating a new array every time you want to check if an array is palindrome. Alas,

because we ran out of memory, we need a more e�cient solution.

(3.a) The header for the old palindrome function is given below. It checks if A[i,j) is a palindrome.

It uses an inclusive bound on i, but an exclusive bound on j.

bool is_palindrome_old(int[] A, int i, int j)
//@requires 0 <= i && i <= j && j <= \length(A);

The TAs have again started you o� by writing the function header and the loop below. Try

and �ll in the loop invariants using the speci�cation function we provided above.

Hint: you are returning true at the end of the function, so you want the loop invariants to

help you prove that is_palindrome_old(A, 0, n) is true when the loop exits normally.

Remember: labs are collaborative! If this is challenging, work with your neighbors!

1 bool is_palindrome(int[] A, int n)
2 //@requires 0 <= n && n <= \length(A);
3 //@ensures \result == is_palindrome_old(A, 0, n);
4 {
5 for (int i = ; i < ; i++)
6 //@loop_invariant ;
7 //@loop_invariant ;
8 {
9 ...

10 }
11 return true;
12 }

(3.b) Again, using these loop invariants to guide you, open up palindrome.c0 and �ll in the loop

body there. When ready, test your implementation as follows:

� �
% coin -d palindrome.c0
--> is_palindrome(to_arr(1221), 4);
true (bool)
--> is_palindrome(to_arr(122), 3);
false (bool)
--> is_palindrome(to_arr(9), 1);
true (bool)� �



You can test your code by running cc0 -d -x palindrome.c0 test-palindrome.c0
Make sure your code passes this test to get the extra credit!3pt


