
15-122: Principles of Imperative Computation Spring 2020

Lab 4: TA Training Thursday January 30th

Collaboration: In lab, we encourage collaboration and discussion as you work through the prob-

lems. These activities, like recitation, are meant to get you to review what we've learned, look

at problems from a di�erent perspective and allow you to ask questions about topics you don't

understand. We encourage discussing problems with your neighbors as you work through this lab!

Setup: This lab MUST be done in the Andrew machines. Download the handout from the website.� �
% cd private/15122
% mkdir lab04
% cd lab04
% wget https://web2.qatar.cmu.edu/~srazak/courses/15122-s20/lab/handout-04.tgz
% tar xfvz handout-04.tgz� �
Grading: For full credit, your tests should catch at least half of the bugs. For extra credit, write

tests that catch all of the bugs!

Reminder: it's okay if you don't get extra credit on every lab! The way we grade labs, you will

get all the possible points as long as you attend every lab and get full credit on a handful of labs.

Introduction

Iliano is writing a new programming assignment called sets, where he has students represent sets of

integers as int arrays. One of the functions he wants them to write is intersect which computes

the intersection of two arrays. The relevant section of the writeup is below:

int intersect(int[] A, int n, int[] B, int m, int[] intersection)
//@requires 0 <= n && n <= \length(A);
//@requires 0 <= m && m <= \length(B);
//@requires n <= \length(intersection) || m <= \length(intersection);
/*@ensures 0 <= \result && \result <= m && \result <= n; @*/ ;

The function intersect computes the intersection of two arrays A and B, de�ned as the array

containing all the elements that occur in both A and B (in sorted order and without duplicates).

We do not enforce that A and B have no duplicates nor that they be sorted. Here's an example:

Unfortunately, we cannot just return the intersection as an array and expect the client to know

how long this array is, so we have to do something a little bit more fancy � we have the client

give us an array that they want to be �lled with the intersection, and we just return the number

of integers in the intersection. The example above would now look like this:

Unfortunately, he is busy teaching 122, and so he decided to o�oad writing tests to his trusted TAs.

Then he remembered that all his TAs are busy as well, and came up with the perfect alternative:

have students write the tests so he can see who would be a good TA! A truly ingenious solution!

Testing code

The �le testlib.c0 contains the following helper functions, which may be useful while testing:

bool arr_eq(int[] A, int n, int[] B, int m)
/*@requires n <= \length(A) && m <= \length(B); @*/ ;
int[] int_array_from_string(string s);

(2.a) When writing test cases, we usually run the function on sample inputs and assert whether

they match the output we expect. This can get quite repetitive, so we will often write a

function that takes in the inputs and solution and tests to see if the actual output matches

the solution. Write the following function in set-test.c0 where, when given two arrays and

the expected result, it asserts that the intersect function provided the correct answer

void run_testcase(int[] A, int a, int[] B, int b, int[] expected, int exp_len)
/*@requires 0 <= a && a <= \length(A)

&& 0 <= b && b <= \length(B)
&& 0 <= e && e <= \length(expected); @*/

(2.b) Inside function run_tests (in �le set-test.c0), create an exhaustive battery of tests for

intersect. It should return true when run against a correct implementation of intersect,
and false when run against a buggy implementation. We will execute it against 20 di�erent

student implementations of intersect, some correct and many broken in di�erent ways.

Note: You may �nd it it useful to organize your test �le based on what you're testing for. That

is, you could separate it into a "Basic Tests" section, "Tests about Duplicates" section, etc.

You further can print "Basic Tests Passed!" or "Duplicates passed!" to give more information

on where a problem might lie. If you like modularity (we do), these could be helper functions!

Run ./check-test. This will run your tests on 20 student versions of intersect, some of

which are correct implementations, and some of which are incorrect. The program ./check-test
can also be run against a speci�c student by calling it with ./check-test -s <student_name>
(run it �rst without arguments to get the student names). Your tests must all pass on

correct implementations in order to get credit. A sample output can be found below:

� �
% ./check-test
Testing student aardvark (Correct Implementation)

Test 1... Passed
Test 2... Failed
Test 3... Passed

Student code failed a test (expected to pass)
...
Testing student rjsimmon (Incorrect Implementation)

Test 1... Passed

Test 2... Failed
Test 3... Failed

Student code failed a test (expected to fail)... Good!
...
Tested 20 students, 9 students had no failed tests, 11 students had failed tests.
(No credit to be awarded --- your code fails students with correct code)� �

1.5pt (2.c) Your run_tests returns true on all correct implementations of intersect.

3pt (2.d) Additionally, your run_tests returns false on half the buggy implementations of intersect.

4pt (2.e) Additionally, your run_tests returns false on all the buggy implementations of intersect.

