
15-122: Principles of Imperative Computation Spring 2020

Lab 5: Fibonacci has Bad Internet Tuesday February 4th

Collaboration: In lab, we encourage collaboration and discussion as you work through the prob-

lems. These activities, like recitation, are meant to get you to review what we've learned, look

at problems from a di�erent perspective and allow you to ask questions about topics you don't

understand. We encourage discussing problems with your neighbors as you work through this lab!

Setup: Copy the lab code from our public directory to your private directory:

� �
% cd private/15122
% cp -R /afs/andrew/course/15/122/misc/lab05 .
% cd lab05� �
Grading: For 3 points, do all the tasks through (2.e). For 4 points, �nish the rest of the lab.

Submit the �le lf.c0 in Autolab.

Lagged Fibonacci

The regular Fibonacci numbers are given by the function F (i) where F (i) = i for i ∈ [0, 2) and
where F (i) = F (i− 1) + F (i− 2) for i >= 2. More explicitly:

F (0) = 0
F (1) = 1
F (i) = F (i− 1) + F (i− 2) for i ≥ 2

The lagged Fibonacci numbers make use of two additional parameters j and k, where 0 < j < k.
They are de�ned by the function LF (i) where LF (i) = i for i ∈ [0, k) and where LF (i) = LF (i −
j) + LF (i− k) otherwise. Here is a C0 function that implements this de�nition (note that j and k
do not change during the computation):

1 int LF(int i, int j, int k)
2 //@requires 0 < j && j < k;
3 //@requires i >= 0;
4 {
5 if (i < k) return i;
6

7 int res = 0;
8 res += LF(i-j, j, k);
9 res += LF(i-k, j, k);

10 return res;
11 }

(1.a) The regular Fibonacci numbers can easily be computed on the basis of LF . Can you do so?

F (i) = LF ( )

While LF computes the desired result accurately, it is quite slow for large inputs! This is because it

repeats many of the sub-computations over and over again, which is slow, ine�cient, and redundant.

Can you see why?



Memoization

To avoid these redundant computations, we introduce a data structure known as a memo table �

in our case it will be an array of integers. The idea is that, the �rst time we compute the lagged

Fibonacci number for i, we store it at index i in the memo table. Next time we need the i-th
lagged Fibonacci number, we simply look it up in the table.

Saving the result of computations that we would do over and over is called memoization. This

requires a bit of extra space in the form of the memo table, but it can save an enormous amount

of time because it avoids recomputing these results over and over. This is known as a space-time

trade-o�, a really important concept in computer science.

(2.a) Using the slow LF function, write a speci�cation function is_memo_table that checks that,

for all i ∈ [0, len] (note the inclusive upper bound!), M[i] is either 0 or LF(i,j,k).

bool is_memo_table(int[] M, int len, int j, int k)
//@requires 0 <= len && len < \length(M);

1.5pt

(2.b) Write a new recursive function lf_memo, which returns the same results as LF but uses a

memo table to avoid re-computing results by writing them into an array of integers.

Before the function does any work, it should check whether the result is already in the memo

table, and if so just return that value. If you do have to compute the number, store it in the

memo table before returning, so that future calls will not have to do the same work again.

DANGER! Do not use the function LF in your lf_memo function outside of contracts! This

will reintroduce the problem where we perform many redundant computations, which defeats

the entire purpose of our memo table! At this point, LF has become a speci�cation function

for us.

int lf_memo(int[] M, int i, int j, int k)
//@requires 0 < j && j < k;
//@requires 0 <= i && i < \length(M);
//@requires is_memo_table(M, i, j, k);
//@ensures is_memo_table(M, i, j, k);
//@ensures \result == LF(i, j, k);

(2.c) Using lf_memo as a helper function, write the function fast_lf(i,j,k) that initializes a

new array and calls the helper to compute the lagged Fibonacci number.

int fast_lf(int i, int j, int k)
//@requires 0 < j && j < k;
//@requires 0 <= i;
//@ensures \result == LF(i, j, k);

(2.d) Check that your fast_lf function works by running it in coin with -d for some small Fibonacci

numbers. Then run it in coin without -d so that you actually notice a speedup. Running

with -d is slow as LF is called in the postcondition.



(2.e) What is the 54,321st Fibonacci number (mod 232, of course)? What is the 100,000th lagged

Fibonacci number with j = 1 and k = 25?

Now would be a good time to compare notes with your neighbors if you haven't done that already.

How do their functions look the same? How do they look di�erent?3pt

Timing code

In Unix, there is a way to determine the actual running time of a program. You use the time
command followed by the program name (and its arguments) that you want to time. For example,

to time an executable a.out in your current directory, you would enter:

� �
% time ./a.out
Testing with n = 1000... Done. 0
4.602u 0.015s 0:04.63 99.5% 0+0k 0+0io 0pf+0w� �
The �rst number (the one with a u after it) is the best one to track for this activity. The �u� is

for user, which is closer to what we want than the system time (the amount of time the program

handed control over to the operating system) or the wall clock time.

(3.a) In the lab directory, run the following commands:

� �
% make LFtest
% make memotest� �
This will create two programs, LFtest and memotest that take an argument n, and print the

result of lagged �bonacci performed on the arguments (n, 1, 2) � these are actually just

the regular Fibonacci numbers! You can use these to time both the speci�cation function and

your new function. For example, to time the LF speci�cation function using input 10, you

would enter:

� �
% time ./LFtest 10� �
Your job is to determine the asymptotic complexity (runtime) of each program expressed using

big-O notation as a function of n, in its simplest, tightest form.

You can determine the complexity of a program by running it for varying values of n and then

plotting your results (or looking for obvious patterns).

Keep in mind that the speci�cation function should have a signi�cantly worse asymptotic complexity

than your fast_LF implementation.4pt


