
15-122: Principles of Imperative Computation Spring 2020

Lab 7: List(en) Up! Tuesday February 25th

Collaboration: In lab, we encourage collaboration and discussion as you work through the prob-

lems. These activities, like recitation, are meant to get you to review what we've learned, look

at problems from a di�erent perspective and allow you to ask questions about topics you don't

understand. We encourage discussing problems with your neighbors as you work through this lab!

Setup: Copy the lab code from our public directory to your private directory:

� �
% cd private/15122
% cp -R /afs/andrew/course/15/122/misc/lab07 .
% cd lab07� �
Grading: For full credit, �gure out the problems in at least the �rst three broken implementations

of sortedlist. For extra credit, �gure out the problems in all the broken implementations.

Introduction

Hyrum's cloud-based motorcycle repair company C0 on Wheels is in trouble! In order to prepare for

large number of clients and their motorcycles repairs, he implemented a new data structure to keep

track of id numbers in sorted order. Unfortunately, all of his implementations seem to be having

weird problems! He's hired YOU to �gure out the problems with his code. The future of this SaaS

(Scooter-repair as a Service) company is in your hands!

Sorted linked lists

Hyrum's data structure involves sorted linked lists of integers without duplicates. Another thing

that's di�erent from the linked lists that you've seen in lecture and homework is that there is no

�dummy node� at the end of the list. The end of the linked list is reached when the next pointer

on a node is NULL. Here's an example of Hyrum's data structure:

In the illustration above, Q is a sorted linked list containing no numbers, R contains just 12, and S
contains −2, 6, and 12. Neither T nor U is a valid sorted linked list (for them, is_sortedlist(T)
and is_sortedlist(U) will both return false).

The handout �le listlib.c0 contains declarations for the types list (identical to what we saw in



class) and sortedlist (a struct pointing to a list as in the previous illustration). It also contains

the following speci�cation functions and helper functions, which may be useful while testing.

bool is_segment(list* start, list* end);
bool no_circularity(sortedlist* L);
bool is_sortedlist(sortedlist* L);
sortedlist* array_to_linkedlist(int[] A, int n)
/*@requires 0 <= n && n <= \length(A) @*/ ;

int list_length(sortedlist* L)
/*@requires L != NULL && no_circularity(L) @*/ ;

int[] linkedlist_to_array(sortedlist* L)
/*@requires L != NULL && no_circularity(L) @*/
/*@ensures list_length(L) == \length(\result) @*/ ;

bool arr_eq(int[] A, int[] B, int n)
/*@requires 0 <= n && n <= \length(A) && n <= \length(B) @*/ ;

The function array_to_linkedlist naively constructs a linked list (not a sorted list) from an

array. Thus, if we have an array A equal to [-2, 6, 12], then array_to_linkedlist(A, 3)
would create the linked list S above.

The handout directory lab07 also contains Hyrum's �ve bad implementations of sortedlist,
named sortedlist-bad1.c0, sortedlist-bad2.c0, etc. Each de�nes the functions is_in, insert
and delete.

Your job for this lab will be to write exhaustive test cases for the functions is_in, insert and

delete to catch the bugs in the broken implementations. Write your tests in the �le sortedlist-test.c0
in the directory lab07.

You can compile and run your code with these commands (one for each bad �le):� �
% make 1
% make 2
% make 3
% make 4
% make 5� �
(make is a program that can help you compile code. You can Google it to learn more if you want.)

Your code should indicate a problem for each of the bad implementations. Figure out the exact line

that causes that bug, and place a comment explaining the bug next to the line where it occurs. Do

this for every bug you �nd in the code. Submit the code with your comments in Autolab for credit.

1.5pt (2.a) Find the bugs in the �rst broken implementation (bad1).

3pt (2.b) Additionally, �nd the bugs in the next two broken implementations (bad2 and bad3).

4pt (2.c) Finally, �nd the bugs in the remaining two broken implementations (bad4 and bad5).

Some hints:

� To get the most out of this lab, don't spend a long time reading the bad imple-

mentations! Some of the bugs are quite subtle, and what we want to teach you is

to write good tests.



� Be thorough with your edge cases! Make sure the linked list behaves exactly as speci�ed.

� Some implementations cause NULL pointer dereferences. Others cause contract failures. Others
yet cause contract exploits. Make sure your tests can catch each of these types of bugs.

� Some bugs �cancel� each other out and make a list appear to work correctly and not fail any

contracts. The later versions of sortedlist may have multiple errors!


