
15-122: Principles of Imperative Computation Spring 2020

Lab 8: Hash This! Tuesday March 10th

Collaboration: In lab, we encourage collaboration and discussion as you work through the prob-

lems. These activities, like recitation, are meant to get you to review what we've learned, look

at problems from a di�erent perspective and allow you to ask questions about topics you don't

understand. We encourage discussing problems with your neighbors as you work through this lab!

Setup: Download the handout

� �
% cd private/15122
% wget https://web2.qatar.cmu.edu/~srazak/courses/15122-s20/lab/handout-08.tgz
% tar xfvz handout-08.tgz
% cd lab08� �

Grading: Complete (1.a) to (1.c) for full credit. Additionally, �nish (2.a) for extra credit. Submit

your �les to Autolab..

Finding collisions in hash functions

Partial ASCII Table

32 20 64 40 @ 96 60 ‘
33 21 ! 65 41 A 97 61 a
34 22 " 66 42 B 98 62 b
35 23 # 67 43 C 99 63 c
36 24 $ 68 44 D 100 64 d
37 25 % 69 45 E 101 65 e
38 26 & 70 46 F 102 66 f
39 27 ’ 71 47 G 103 67 g
40 28 (72 48 H 104 68 h
41 29) 73 49 I 105 69 i
42 2A * 74 4A J 106 6A j
43 2B + 75 4B K 107 6B k
44 2C , 76 4C L 108 6C l
45 2D - 77 4D M 109 6D m
46 2E . 78 4E N 110 6E n
47 2F / 79 4F O 111 6F o
48 30 0 80 50 P 112 70 p
49 31 1 81 51 Q 113 71 q
50 32 2 82 52 R 114 72 r
51 33 3 83 53 S 115 73 s
52 34 4 84 54 T 116 74 t
53 35 5 85 55 U 117 75 u
54 36 6 86 56 V 118 76 v
55 37 7 87 57 W 119 77 w
56 38 8 88 58 X 120 78 x
57 39 9 89 59 Y 121 79 y
58 3A : 90 5A Z 122 7A z
59 3B ; 91 5B [123 7B {
60 3C < 92 5C \ 124 7C |
61 3D = 93 5D] 125 7D }
62 3E > 94 5E ^ 126 7E ∼
63 3F ? 95 5F _

Recall that a hash function h(k) takes a key k as its argu-

ment and returns some integer, a hash value; we can then

use abs(h(k)%m) as an index into our hash table. In this lab

you will be examining various hash functions and exploiting

their ine�ciencies to make them collide.

It will be convenient to will denote a string of length n (for

n > 0) as s0s1s2...sn−2sn−1, where si is the ASCII value of

character i in string s. (A partial ASCII table is given to

the right.) We de�ne four hash functions as follows:

hash_add: h(s) = s0 + s1 + s2 + · · ·+ sn−2 + sn−1

hash_mul32:

h(s) = (. . . ((s0×32+s1)×32+s2)×32 · · ·+sn−2)×32+sn−1

hash_mul31:

h(s) = (. . . ((s0×31+s1)×31+s2)×31 · · ·+sn−2)×31+sn−1

hash_lcg:

h(s) = f(f(. . . f(f(f(s0)+s1)+s2) · · ·+sn−2)+sn−1)

where f(x) = 1664525× x+ 1013904223

These four hash functions have been implemented for you

and can be run from the command line like this, for example:

� �
% hash_add
Enter a string to hash: bar

hash value = 309
hashes to index 309 in a table of size 1024

Another? (empty line quits):� �
Note that the command line hashing tool also reports where the element with the given key will

hash to given a table size of 1024. This is important because hash tables have a limited size, so we

want to minimize collisions within said size.

The �rst exercise requires you to mathematically reverse-engineer one of the simpler hash functions:

(1.a) Find three or more strings, each string containing three or more characters, that would always

collide because they have the same hash value using hash_add. Write the strings, one string

per line, in the �le equal_hashadd.txt.1.5pt

Now, let's work through a more complicated real-world example: hashing an entire dictionary. We

would like to know which hashing function would be the best to hash the Scrabble dictionary. We

de�ne a hashing function to be �better� based on how e�ciently it spreads out the words over the

buckets. Obviously, this depends on the size of our hash table: if we have a smaller hash table,

there will naturally be more collisions. That's why we can use a visualizer (implemented for you in

�le visualizer.c0) to see how many words hash to each bucket for a given hash function.

(1.b) Implement your own version of hash_mul32 in hash-a.c0 so that the function hash_string(s)
returns an integer representing the hash value for s using the formula given on the previous

page. The string library may be helpful in this. You can compile your code and run it with

the following command:� �
% cc0 hash-a.c0 hash-dictionary.c0 visualizer.c0
% ./a.out -o mul32.png
% display mul32.png� �

This will output a graphical visualization of your hash function on the dictionary for a table of

size 1024, with the vertical lines showing how many values hashed to that index in the table.

If you are ssh'ing remember to ssh with -Y or -X! You can run your program with the -n �ag

followed by a di�erent table size if you like. You can see just how ine�ective hash_mul32 is!

(1.c) Now, similarly implement hash_lcg in hash-b.c0, and compile it for the dictionary:� �
% cc0 hash-b.c0 hash-dictionary.c0 visualizer.c0� �

Run it like above to see how well it hashes the dictionary. Compare this to hash_mul32.3pt

Hashing faculty

In �le profs.txt, there is a list of CS faculty info, which we will parse for you into the following

structs. We would like to hash such structs into a hash table (some �elds may be blank):

http://c0.typesafety.net/doc/c0-libraries.pdf

typedef struct prof prof_t;
struct prof {
string name; string title; string office; string email;
int area_code; // 0 if no phone number
int phone; // 0 if no phone number

};

(2.a) Implement two di�erent ways of hashing faculty within a function called hash_prof(prof_t* p)
in two di�erent C0 �les. Try and think of two di�erent strategies. You can use your code for

hashing a string if you would like to hash the strings separately.

Compile and run your code as follows:� �
% cc0 <your hash file>.c0 hash-profs.c0 visualizer.c0
% ./a.out -o mullcg.png� �

Run them through the visualizer and compare the results. You and your neighbor can each

write one and then compare. Try and understand what makes a better hashing function!

Hint: try lowering the bucket size as there is way less faculty than words in the dictionary.4pt

