
15-122: Principles of Imperative Computation Spring 2020

Lab 9: Legacy of the void* Tuesday March 17th

Collaboration: In lab, we encourage collaboration and discussion as you work through the prob-

lems. These activities, like recitation, are meant to get you to review what we've learned, look

at problems from a di�erent perspective and allow you to ask questions about topics you don't

understand. We encourage discussing problems with your neighbors as you work through this lab!

Setup: Copy the lab code from our public directory to your private directory:

� �
% cd private/15122
% mkdir lab09
% cd lab09
% wget https://web2.qatar.cmu.edu/~srazak/courses/15122-s20/lab/handout-09.tgz
% tar xfvz handout-09.tgz� �

Grading: Finish tasks (1.a) to (1.c) for full credit, and additionally �nish (1.d) for extra credit.

Using generic hash tables

In this lab, we'll be using the hash dictionaries discussed in lecture, but we'll be implementing a

slightly di�erent dictionary interface than what we saw in class.

/*** Client interface ***/

typedef void* key;
typedef void* value;

typedef bool key_equiv_fn(key x, key y);
typedef int key_hash_fn(key x);

/*** Library interface ***/

// typedef ______* hdict_t;
typedef struct hdict_header* hdict_t;

hdict_t hdict_new(int capacity, key_equiv_fn* equiv, key_hash_fn* hash)
/*@requires capacity > 0 && equiv != NULL && hash != NULL; @*/
/*@ensures \result != NULL; @*/ ;

value hdict_lookup(hdict_t H, key k)
/*@requires H != NULL; @*/ ;

void hdict_insert(hdict_t H, key k, value v)
/*@requires H != NULL && v != NULL; @*/
/*@ensures hdict_lookup(H, k) == v; @*/ ;

Our sample application will be used in checking student attendance. Your code for this should go

in a �le called rollcall.c1.

(1.a) De�ne a struct that represents students. Its �elds should include andrew_id (string),

days_present (int), and days_absent (int). You can include other �elds if you want,

but you need these �elds with these types.

Write out the de�nition of this struct. Include a typedef so that you can allocate structs

with alloc(student).1.5pt

(1.b) Write client functions for a hashtable based on student information. For this lab we will think

of our keys as being Andrew IDs, and therefore be using pointers to strings (string*) to

represent them. We will think of the entries as being students, and therefore use pointers to

students (student*) to represent the value.

Hint: Your functions should have the requirement that x and y are both non-NULL and have

string* as their tag.

int hash_student(key x);
bool students_same_andrewid(key x, key y);

(1.c) Write a function that initializes a hdict_t with students that have no attendance record.

Don't worry about what happens if there are duplicates in this array.

hdict_t new_roster(string[] andrew_ids, int len)
//@requires \length(andrew_ids) == len;

3pt

At this point, you should create a trivial main() function inside rollcall.c1 just to make sure

your code compiles:� �
cc0 -d hdict.c1 rollcall.c1� �
You'll need to delete this main() function before compiling with test-rollcall.c1 below.

(1.d) Write functions that increment a student's attendance record.

void mark_present(hdict_t H, string andrew_id)
//@requires H != NULL;

void mark_absent(hdict_t H, string andrew_id)
//@requires H != NULL;

These functions should manipulate the days_present and days_absent �elds stored in the

hash table, so that hdict_lookup can access these �elds later on.4pt

You can compile and run your code with test-rollcall.c1:

� �
% cc0 -d hdict.c1 rollcall.c1 test-rollcall.c1
% ./a.out
Enrolling bovik, rjsimmon, fp, and niveditc... done.
Student gburdell is not enrolled...
Student bovik is enrolled...
Student rjsimmon is enrolled...
Student twm is not enrolled...

Student bovik: 5 present, 4 absent...
Student rjsimmon: 8 present, 1 absent...
Student niveditc: 8 present, 1 absent...
Student fp: 2 present, 7 absent...
Done!� �

