
15-122: Principles of Imperative Computation Spring 2020

Lab 14: Spend Some Cycles Thinking Tuesday April 21st

Collaboration: In lab, we encourage collaboration and discussion as you work through the prob-

lems. These activities, like recitation, are meant to get you to review what we've learned, look

at problems from a di�erent perspective and allow you to ask questions about topics you don't

understand. We encourage discussing problems with your neighbors as you work through this lab!

Setup: Copy the lab code from our public directory to your private directory:

� �
% cd private/15122
% mkdir lab14
% cd lab14
% wget https://web2.qatar.cmu.edu/~srazak/courses/15122-s20/lab/handout-14.tgz
% tar xfvz handout-14.tgz� �
You should add your code to the existing �les graph.c, graph-search.c, graph-search.h, and
graph-test.c.

Grading: Finish through (2.d) for full credit, and �nish (3.a) and (3.b) for extra credit.

The graph interface

This lab involves implementing a graph using an adjacency matrix rather than an array of adjacency

lists. Graphs will be speci�ed by the following C interface (as in graph.h):

typedef unsigned int vertex;
// typedef ______* graph_t;
// typedef ______* neighbors_t;

// New graph with v vertices
graph graph_new(unsigned int v);
//@ensures \result != NULL;

void graph_free(graph G);
//@requires G != NULL;

unsigned int graph_size(graph G);
//@requires G != NULL;

bool graph_hasedge(graph G,
vertex v,
vertex w);

//@requires G != NULL;
//@requires v < graph_size(G);
//@requires w < graph_size(G);

void graph_addedge(graph G, vertex v, vertex w);
//@requires G != NULL;
//@requires v != w;
//@requires v < graph_size(G);
//@ensures w < graph_size(G);
//@requires !graph_hasedge(G, v, w);

neighbors_t graph_get_neighbors(graph_t G, vertex v);
//@requires G != NULL && v < graph_size(G);
//@ensures \result != NULL;

bool graph_hasmore_neighbors(neighbors_t nbors);
//@requires nbors != NULL;

vertex graph_next_neighbor(neighbors_t nbors);
//@requires nbors != NULL;
//@requires graph_hasmore_neighbors(nbors);

void graph_free_neighbors(neighbors_t nbors);
//@requires nbors != NULL;



Representing undirected graphs with an adjacency matrix

In class, we discussed the adjacency list implementation of graphs. In this lab, we'll work through

the adjacency matrix implementation.

Recall that if a graph has n vertices, then its adjacency matrix adj is an n × n array of booleans

such that adj[i][j] is true if there is an edge from vertex i to vertex j (for valid i and j), false
otherwise. Since the graph is undirected, if adj[i][j] is true, then adj[j][i] should also be

true, and if adj[i][j] is false, then adj[j][i] should also be false. The graph should not

have any self-loops (i.e., a vertex with an edge to itself).

(2.a) Complete the data structure invariant function is_graph that returns true if G points to a

valid graph given the de�nition above, or false otherwise.

Make sure to capture the fact that the graph is undirected in your data structure invariant! Compare

notes with a neighbor before you move on.1.5pt

(2.b) Complete the graph_new function that creates a new graph using a dynamically-allocated 2D

array of boolean for the adjacency matrix. Create the 2D array in two steps: �rst create a new

1D array of type bool*, then for each array element, have it point to a new 1D array of type

bool. You can then access the array using the 2D notation (e.g., G->adj[0][1] = true).

Note: Don't ever do this in practice! C has ways of supporting 2D arrays that don't require an

extra array of pointers; you'll learn about this more e�cient way of doing things in later classes,

like 15-213.

(2.c) Complete the functions graph_hasedge that checks if an edge is in the graph and graph_addedge
that adds a new edge to the graph.

(2.d) Complete the graph_free function that frees any dynamically-allocated memory for the given

graph G.

The functions graph_get_neighbors, graph_hasmore_neighbors, graph_next_neighbor and

graph_free_neighbors have been pre-implemented for you at the very bottom of �le graph.c,
but for an extra challenge write them yourself.

Once you are done implementing the functions above, you should have a complete graph.c. Compile

your code and test it with the given DFS and BFS searches in graph-search.c and the given graphs
in graph-test.c:� �
% make graphtest
% ./graphtest� �
All tests should pass. (Look at the graphs in graph-test.c to see why.) Be sure to use valgrind
also to make sure you have freed all memory you allocated!3pt



Testing for graph connectedness

We say that a graph G is connected if there is a path from any vertex to any other vertex in G.
In an undirected graph, this de�nition is equivalent to saying that there is a path from a single

arbitrary vertex to any other vertex. Can you see why?

(3.a) Write a function connected(G) in graph-search.c that returns true if a graph G is con-

nected, or false otherwise. Make sure your implementation is as e�cient as possible.

Hint: Perform a BFS and count the number of vertices visited. For a connected graph, the

total should be a speci�c value. Test your function on several graphs, connected and not

connected.

(3.b) Update graph-search.h with the new function, and write at least two test cases in graph-test.c:
one where connected returns true, and one where it returns false.4pt


