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In this lecture we introduce the idea of imperative data structures. So far, the
only interfaces we’ve used carefully are pixels and string bundles. Both of
these interfaces had the property that, once we created a pixel or a string
bundle, we weren’t interested in changing its contents. In this lecture, we’ll
talk about an interface that extends the arrays that are primitively available
in C0.

To implement this interface, we’ll need to round out our discussion of
types in C0 by discussing pointers and structs, two tastes that go great to-
gether. We will discuss using contracts to ensure that pointer accesses are
safe.

Relating this to our learning goals, we have

Computational Thinking: We illustrate the power of abstraction by con-
sidering both the client-side and library-side of the interface to a data
structure.

Algorithms and Data Structures: The abstract data structure will be one
of our first examples of abstract datatypes.

Programming: Introduction of structs and pointers, use and design of in-
terfaces.

1 Structs

So far in this course, we’ve worked with five different C0 types — int,
bool, char, string, and arrays t[] (there is a array type t[] for every type
t). The character, Boolean and integer values that we manipulate, store
locally, and pass to functions are just the values themselves. For arrays (and
strings), the things we store in assignable variables or pass to functions are
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addresses, references to the place where the data stored in the array can be
accessed. An array allows us to store and access some number of values of
the same type (which we reference as A[0], A[1], and so on).

Therefore, when entering the following commands in Coin (the outputs
have been elided),

--> char c = ’\n’;
--> int i = 4;
--> string[] A = alloc_array(string, 4);
--> A[0] = "hi";
--> A[1] = "je";
--> A[2] = "ty";
--> A[3] = "lo";

the interpreter will store something like the following in its memory:

The next data structure we will consider is the struct. A struct can be
used to aggregate together different types of data, which helps us create
data structures. By contrast, an array is an aggregate of elements of the
same type.

Structs must be explicitly declared in order to define their “shape”. For
example, if we think of an image, we want to store an array of pixels along-
side the width and height of the image, and a struct allows us to do that:

struct img_header {
pixel_t[] data;
int width;
int height;

};

Here data, width, and height are fields of the struct. The declaration
expresses that every image has an array of pixel_ts called data as well as
a width and a height. This description is incomplete, as there are some
missing consistency checks — we would expect the length of data to be
equal to the width times the height, for instance, but we can capture such
properties in a separate data structure invariant.

C0 values such as integers, characters, the address of an array are small.
Depending on the computer, an address is either 64 bits long or 32 bits
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long, which means that the small types take at most 64 bits to represent.
Because structs can have multiple components, they can grow too large for
the computer to easily copy around, and C0 does not allow us to use structs
as locals:

% coin structs.c0
C0 interpreter (coin) 0.3.2 ’Nickel’
Type ‘#help’ for help or ‘#quit’ to exit.
--> struct img_header IMG;
<stdio>:1.1-1.22:error:type struct img_header not small
[Hint: cannot pass or store structs in variables directly; use
pointers]

Therefore, we can only create structs in allocated memory, just like we
can only store the contents of arrays in allocated memory. (This is true
even if they happen to be small enough to fit into 32 bytes.) Instead of
alloc_array we call alloc which returns a pointer to the struct that has
been allocated in memory. Let’s look at an example in coin.

--> struct img_header* IMG = alloc(struct img_header);
IMG is 0xFFAFFF20 (struct img_header*)

We can access the fields of a struct, for reading or writing, through the
notation p->f where p is a pointer to a struct, and f is the name of a field
in that struct. Continuing above, let’s see what the default values are in the
allocated memory.

--> IMG->data;
(default empty int[] with 0 elements)
--> IMG->width;
0 (int)
--> IMG->height;
0 (int)
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We can write to the fields of a struct by using the arrow notation on the
left-hand side of an assignment.

--> IMG->data = alloc_array(pixel_t, 2);
IMG->data is 0xFFAFC130 (int[] with 2 elements)
--> IMG->width = 1;
IMG->width is 1 (int)
--> (*IMG).height = 2;
(*(IMG)).height is 2 (int)
--> IMG->data[0] = 0xFF00FF00;
IMG->data[0] is -16711936 (int)
--> IMG->data[1] = 0xFFFF0000;
IMG->data[1] is -65536 (int)

The notation (*p).f is a longer form of p->f. First, *p follows the
pointer to arrive at the struct in memory, then .f selects the field f. We will
rarely use this dot-notation (*p).f in this course, preferring the arrow-
notation p->f.

An updated picture of memory, taking into account the initialization
above, looks like this:
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2 Pointers

As we have seen in the previous section, a pointer is needed to refer to a
struct that has been created in allocated memory. It can also be used more
generally to refer to an element of arbitrary type that has been created in
allocated memory. For example:

--> int* ptr1 = alloc(int);
ptr1 is 0xFFAFC120 (int*)
--> *ptr1 = 16;

*(ptr1) is 16 (int)
--> *ptr1;
16 (int)

In this case, we refer to the value of p using the notation *p, either to read
(when we use it inside an expression) or to write (if we use it on the left-
hand side of an assignment).

So we would be tempted to say that a pointer value is simply an ad-
dress. But this story, which was correct for arrays, is not quite correct for
pointers. There is also a special value NULL. Its main feature is that NULL is
not a valid address, so we cannot dereference it to obtain stored data. For
example:

--> int* ptr2 = NULL;
ptr2 is NULL (int*)
--> *ptr2;
Error: null pointer was accessed
Last position: <stdio>:1.1-1.3

Graphically, NULL is sometimes represented with the ground symbol, so we
can represent our updated setting like this:

To rephrase, we say that a pointer value is an address, of which there
are two kinds. A valid address is one that has been allocated explicitly with
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alloc, while NULL is an invalid address. In C, there are opportunities to
create many other invalid addresses, as we will discuss in another lecture.

Attempting to dereference the null pointer is a safety violation in the
same class as trying to access an array with an out-of-bounds index. In C0,
you will reliably get an error message, but in C the result is undefined and
will not necessarily lead to an error. Therefore:

Whenever you dereference a pointer p, either as *p or p->f, you must
have a reason to know that p cannot be NULL.

In many cases this may require function preconditions or loop invariants,
just as for array accesses.
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3 Creating an interface

The next ten lectures for this class will focus on building, analyzing, and
using different data structures. When we’re thinking about implementing
data structures, we will almost always use pointers to structs as the core of
our implementation.

In the rest of this lecture, we will build a data structure for self-sorting
arrays. Like arrays, they will contain a fixed number of elements of a given
type that can be accessed through an index (we will limit ourselves to self-
sorting arrays of strings). Unlike C0 arrays, the values in a self-sorting
array are sorted, and remain so as we update its values. That allows a
programmer using our self-sorting arrays to look for elements using binary
search, in O(log n) time if n is the number of contained elements.

Self-sorting arrays work mostly like arrays of strings. The primitive
operations that C0 provides on string arrays are the ability to create a new
array, to get a particular index of an array, and to set a particular index in
an array. We capture these as three functions that act on an abstract type
ssa_t (mnemonic for self-sorting array type):

// typedef _______ ssa_t;
ssa_t ssa_new(int size); // ~ alloc_array(string, size)
string ssa_get(ssa_t A, int i); // ~ A[i]
void ssa_set(ssa_t A, int i, string x); // ~ A[i] = x

But this is not a complete picture! An interface needs to also capture the
preconditions necessary for using that abstract type safely. For instance, we
know that safety of array access requires that we only create non-negative-
length arrays and we never try to access a negative element of an array:

ssa_t ssa_new(int size) /*@requires size >= 0 @*/;
string ssa_get(ssa_t A, int i) /*@requires 0 <= i; @*/;

This still isn’t enough: our contracts need to ensure an upper bound so that
we don’t access the element at index 100 of a length-12 array. We don’t
have the \length() method, as it is a primitive for C0 arrays, not our new
ssa_t type. So we need an additional function in our interface to get the
length, and we’ll use that in our contracts.

int ssa_len(ssa_t A);
string ssa_get(ssa_t A, int i)
/*@requires 0 <= i && i < ssa_len(A); @*/ ;

It’s important to emphasize what just happened. Because we want the type
ssa_t to be abstract, we can’t use \length in a contract: we can only use
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\length for arrays. Because we have to be able to write a contract that
explains how to use the data type safely, we need to extend our interface
with a new function ssa_len. But because this function is in the interface,
the client can access the length of the array — something that can’t be done
for C0 arrays (outside of a contract)! So we do know something about ssa_t
now: it can’t just be string[], because if it was there would be no way to
implement ssa_len.

For this reason, we’re going to say that ssa_t is not an unknown type
but that it is an unknown pointer type. The updated pseudo-typedef below
shows how we indicate this:

// typedef ______* ssa_t;

int ssa_len(ssa_t A)
/*@requires A != NULL; @*/;

ssa_t ssa_new(int size)
/*@requires 0 <= size; @*/
/*@ensures \result != NULL; @*/
/*@ensures ssa_len(\result) == size; @*/;

string ssa_get(ssa_t A, int i)
/*@requires A != NULL; @*/
/*@requires 0 <= i && i < ssa_len(A); @*/;

void ssa_set(ssa_t A, int i, string x)
/*@requires A != NULL; @*/
/*@requires 0 <= i && i < ssa_len(A); @*/;

Admitting that ssa_t is a pointer also means that we have to add a lot of
NULL checks to the interface — as the client of the ssa_t type, we know
that a value of this type is either a valid pointer to the self-sorting array
data structure, or it is NULL — and we disallow NULL as the representation
of any valid self-sorting array.

4 The Library Perspective

When we implement the library for ssa_t, we will declare a type ssa as
a synonym for struct ssa_header, which has a length field to hold the
length and a data field to hold the actual array.
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struct ssa_header { // Implementation type
int length;
string[] data;

};
typedef struct ssa_header ssa; // Abbreviation

typedef ssa* ssa_t; // Interface type

The last line is where we make a connection between the interface type
ssa_t exported to the user by the interface, and the type ssa (or equiv-
alently struct ssa_header) the library uses to implement the exported
functionalities. As promised, it is a pointer type. We usually write it as the
very last line of the implementation.

Inside the library implementation, we’ll use ssa* instead of ssa_t to
emphasize that we’re manipulating a pointer structure. Outside, we use
exclusively ssa_t as our abstract type of supped up arrays. Using this
knowledge, we can begin to implement the array interface from the library
side, though we immediately run into safety issues.

int ssa_len(ssa* A)
//@requires A != NULL;
{
return A->length;

}

string ssa_get(ssa* A, int i)
//@requires A != NULL;
//@requires 0 <= i && i < ssa_len(A);
{
return A->data[i];

}

In both cases, the precondition A != NULL allows us to say that the derefer-
ences A->length and A->data are safe. But how do we know A->data[i]
is not an out-of-bounds array access? We don’t — the second precondi-
tion of ssa_get just tells us that i is nonnegative and less than whatever
ssa_len returns!

If we want to use the knowledge that ssa_len(A) returns the length
of A->data, then we’d need to add \result == \length(A->data) as a
postcondition of ssa_len. . .

. . . and we can only prove that postcondition true if we add the precon-
dition A->length == \length(A->data) to ssa_len. . .
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. . . and if we do that, it changes the safety requirements for the call to
ssa_len in the preconditions of ssa_get, so we also have to add the pre-
condition A->length == \length(A->data) to ssa_get.

The user, remember, didn’t need to know anything about this, because
they were ignorant of the internal implementation details of the ssa_t
type. As long as the user respects the interface, only creating ssa_t’s
with ssa_new and only manipulating them with ssa_len, ssa_get, and
ssa_set, they should be able to expect that the contracts on the interface
are sufficient to ensure safety. But we don’t have this luxury from the
library perspective: all the functions in the library’s implementation are
going to depend on all the parts of the data structure making sense with
respect to all the other parts. We’ll capture this notion in a new kind of
invariant, a data structure invariant.

4.1 Data Structure Invariants

We can apply operational reasoning as library designers to say that, as long
as the length field of an ssa is set correctly by ssa_new, it must remain cor-
rect throughout all calls to ssa_get and ssa_set. But, as with operational
reasoning about loops, this is an error-prone way of thinking about our
data structures. Our solution in this case will be to capture what we know
about the well-formedness of an array in an invariant; we expect that any
ssa being handled by the user will satisfy this data structure invariant.

The above invariants for self-sorting arrays are pretty simple: a ssa is
well-formed if it is a non-NULL pointer to a struct where \length(A->data)
== A->length. They capture safety but do not say anything about the ar-

ray being sorted. We will add a correctness invariant, that the array be in
fact sorted. This is achieved through a function is_sorted which is imple-
mented similarly to the corresponding function for arrays of integers — it
can be found in the code accompanying this lecture. If we try to turn this
into a mathematical statement that captures the overall well-formedness re-
quirements for our implementation, we get the specification function is_ssa:

bool is_ssa(ssa* A) {
return A != NULL

&& is_array_expected_length(A->data, A->length)
&& is_sorted(A);

}

While we would like is_array_expected_length to be a function that
returns true when the given array has the expected length and false oth-
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erwise, the restriction of length-checking to contracts makes this impossi-
ble to write in C0. In this one case, we’ll allow ourselves to write a data
structure invariant that might raise an assertion error instead of returning
false:

bool is_array_expected_length(string[] A, int length) {
//@assert \length(A) == length;
return true;

}

Whenever possible, however, we prefer data structure invariants that re-
turn true or false to data structure invariants that raise assertion failures.

The data structure invariant, then, implies the postcondition of ssa_len,
and so the function ssa_get will require the data structure invariant to
hold as well, satisfying the precondition of ssa_len.

int ssa_len(ssa* A)
//@requires is_ssa(A);
//@ensures \result == \length(A->data);
{
return A->length;

}

string ssa_get(ssa* A, int i)
//@requires is_ssa(A);
//@requires 0 <= i && i < ssa_len(A);
{
return A->data[i];

}

Functions that create new instances of the data structure should ensure
that the data structure invariants hold of their result, and functions that
modify data structures should have postconditions to ensure that none of
those data structure invariants have been violated.

ssa* ssa_new(int size)
//@requires 0 <= size;
//@ensures is_ssa(\result);
{
ssa* A = alloc(ssa);
A->length = size;
A->data = alloc_array(string, size);
return A;
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}

void ssa_set(ssa* A, int i, string x)
//@requires is_ssa(A);
//@requires 0 <= i && i < ssa_len(A);
//@ensures is_ssa(A);
{
A->data[i] = x;

// Move x up the array if needed
for (int j=i; j < A->length-1 &&

string_compare(A->data[j],A->data[j+1]) > 0;
j++)

//@loop_invariant i <= j && j <= A->length - 1;
swap(A->data, j, j+1);

// Move x down the array if needed
for (int j=i; j > 0 &&

string_compare(A->data[j],A->data[j-1]) < 0;
j--)

//@loop_invariant 0 <= j && j <= i;
swap(A->data, j, j-1);

}

The code below A->data[i] = x moves x up or down the array A->data
to ensure that the sortedness invariant remains satisfied once the func-
tion returns. As a consequence, it is unlikely that a subsequent call to
ssa_get(A, i) will return x as its value. This differs from C0 arrays, for
which elements can always be found where we just put them.

Now that we have added data structure invariants, our operational rea-
soning for why ssa_get was safe can be formalized as an invariant. Any
client that respects the interface will only ever get and will only ever ma-
nipulate arrays that satisfy the data structure invariants, so we know that
the data structure invariants we’re counting on for safety will hold at run-
time.

Invariants Aren’t Usually Part of the Interface
When we have interfaces that hide implementations from the user, then the
data structure invariant, captured here by the function is_ssa, should not
be a part of the interface. Clients don’t need to know that the internal in-
variants are satisfied; as long as they’re using ssa according to the interface,
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their invariants should be satisfied.
This applies to all aspects of is_ssa, in particular to the correctness

invariant checked by the function is_sorted. But how shall the client be
sure that the elements of a self-sorting array are and remains sorted as it
is used? The client may trust the developer of the data structure library.
Another option is to write a client-side version of is_sorted using only the
operations exported by the interface.

4.2 Debugging a Library Implementation

The implementation of the functions ssa_len and ssa_get, and even ssa_new,
is pretty straightforward. But ssa_set is more involved since it moves ele-
ments around to keep the array sorted. Having a bug in our first version is
not unlikely. How to notice our code has a bug? And once we know there
is a bug, how to find where it is so that we can fix it?

There are two complementary approaches to noticing that our code con-
tains a bug. The first is to have a good reason to believe that potentially
unsafe operations are actually safe (array accesses out of bounds in our ex-
ample). As we did earlier, using contracts to reason about our code is a great
way to do so: in this way we can identify and fix errors even before we try
to run our code the first time. However, some bugs are quite subtle and
we may miss them when reasoning about our program. This is when the
second approach comes into play: testing. Once we have a program we are
relatively confident about, we want to write a battery of test cases to identify
any lingering bugs. Except sometimes for very large test cases, we always
want to run out tests in debug mode (by compiling them with the -d flag).

Once testing reveals a bug, we need to find out exactly where it is so
that we can fix it. Sometimes, this is quite easy: a simple inspection of
the function that fails the test will do it. Often, however, bugs are not as
obvious. There are two may ways to identify a bug. The first one relies on
contracts, in particular data structure invariants. When a test fails because
of a contract violation, the execution will abort by reporting the exact line
where the contract failed. From there, it is usually easy to find what went
wrong and to fix it.

The second approach to figuring out what is causing a bug is to use print
statements. This is useful when the bug does not cause a contract to fail (for
example if our code for ssa_set had written the new string x in every po-
sition in the array A->data) or because our contracts are not strong enough
(e.g., if we wrote incorrect data structure invariants). One particularly use-
ful use of print statements is to print the contents of the data structure the
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library is implementing. To this end, we write a print function print_ssa
that we can use in our implementation to inspect the contents of the data
structure anytime we feel something may be off. Here it is:

void print_ssa(ssa* A)
//@requires is_ssa(A);
{
int len = A->length;
print("SSA length: "); printint(len);
print("; SSA data: [");
for (int i = 0; i < len; i++)
//@loop_invariant 0 <= i && i <= len;
{
print(A->data[i]);
if (i < len-1) print(", ");

}
print("]");

}

Like the specification function is_ssa, the print function lives in the library
implementation and is not exported to the client. (Some libraries may want
to export a print function, but it is best to give it a different name.) Like
is_ssa, it is good practice to write print_ssa before implementing any
library function. Notice that print_ssa uses the fields of the underlying
implementation type rather than the functions exported by the interface
(e.g., A->length as opposed to ssa_len(A)). This is because we want to
use it to catch bugs in these very functions! (We sometimes relax this rule
for library functions that are particularly simple.) Here, we gave the print
function the precondition is_ssa(A). This is what we want to do when
we are confident the specification function is correct. If we had a bug in
is_ssa, it may be worth commenting out this precondition temporarily so
that we can use our print function inside the code of is_ssa to find the bug
(but then we want to put the precondition back).

5 The Client Perspective

The client of our self-sorting array library can use any function exported by
the library (plus the type ssa_t) and nothing else. As an example, we write
a client-side printing function.

void display_this_ssa(ssa_t A)
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//@requires A != NULL;
{
println("");
for (int j = 0; j < ssa_len(A); j++)
//@loop_invariant 0 <= j;
{
printint(j); print(" => "); println(ssa_get(A, j));

}
}

Notice that this code uses the functions exported by the interface (here
ssa_len and ssa_get). Using the fields length and data of its imple-
mentation would violate the interface, and most likely result in bugs when
compiling this code with another implementation of this library. Similarly,
defining display_this_ssa as

void display_this_ssa(ssa_t A)
//@requires A != NULL;
{
print_ssa(A);

}

would be a violation of the interface because print_ssa is not exported by
the library.
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