
Lecture 22
Programs as Data: The C0VM

15-122: Principles of Imperative Computation (Spring 2020)
Frank Pfenning

A recurring theme in computer science is to view programs as data. For
example, a compiler has to read a program as a string of characters and
translate it into some internal form, a process called parsing. Another in-
stance are first-class functions, which you will study in great depth in 15–
150, a course dedicated to functional programming. When you learn about
computer systems in 15–213 you will see how programs are represented as
machine code in binary form.

In this lecture we will take a look at a virtual machine. In general, when
a program is read by a compiler, it will be translated to some lower-level
form that can be executed. For C and C0, this is usually machine code. For
example, the cc0 compiler you have been using in this course translates
the input file to a file in the C language, and then a C compiler (gcc) trans-
lates that in turn into code that can be executed directly by the machine.
In contrast, Java implementations typically translate programs into some
intermediate form called byte code which is saved in a class file. Byte code
is then interpreted by a virtual machine called the JVM (for Java Virtual Ma-
chine). So the program that actually runs on the machine hardware is the
JVM which interprets byte code and performs the requested computations.

Using a virtual machine has one big drawback, which is that it will be
slower than directly executing a binary on the machine. But it also has a
number of important advantages. One is portability: as long as we have an
implementation of the virtual machine on our target computing platform,
we can run the byte code there. So we need a virtual machine implementa-
tion for each computing platform, but only one compiler. A second advan-
tage is safety: when we execute binary code, we give away control over the
actions of the machine. When we interpret byte code, we can decide at each
step if we want to permit an action or not, possibly terminating execution if
the byte code would do something undesirable like reformatting the hard

LECTURE NOTES c© Carnegie Mellon University 2020

Lecture 22: Programs as Data: The C0VM 2

disk or crashing the computer. The combination of these two advantages
led the designers of Java to create an abstract machine. The intent was for
Java to be used for mobile code, embedded in web pages or downloaded
from the Internet, which may not be trusted or simply be faulty. Therefore
safety was one of the overriding concerns in the design.

In this lecture we explore how to apply the same principles to develop
a virtual machine to implement C0. We call this the C0VM and in the last
assignment of this course you will have the opportunity to implement it.
The cc0 compiler has an option (-b) to produce bytecode appropriate for
the C0VM. This will give you insight not only into programs-as-data, but
also into how C0 is executed, its operational semantics.

As a side remark, at the time the C language was designed, machines
were slow and memory was scarce compared to today. Therefore, efficiency
was a principal design concern. As a result, C sacrificed safety in a number
of crucial places, a decision we still pay for today. Any time you download
a security patch for some program, chances are a virus or worm or other
malware was found that takes advantage of the lack of safety in C in order
to attack your machine. The most gaping hole is that C does not check if
array accesses are in bounds. So by assigning to A[k] where k is greater
than the size of the array, you may be able to write to some arbitrary place
in memory and, for example, install malicious code. In 15–213 Computer
Systems you will learn precisely how these kinds of attacks work, because
you will carry out some of your own!

In C0, we spent considerable time and effort to trim down the C lan-
guage so that it would permit a safe implementation. This makes it mar-
ginally slower than C on some programs, but it means you will not have to
try to debug programs that crash unpredictably. You have been introduced
to the major unsafe features of C, when the course switched to C, and we
taught you programming practices that avoid these kinds of behavior. But
it is very difficult, even for experienced teams of programmers, as the large
number of security-relevant bugs in today’s commercial software attests.
One might ask why program in C at all? One reason is that many of you,
as practicing programmers, will have to deal with large amounts of legacy
code that is written in C or C++. As such, you should be able to under-
stand, write, and work with these languages. The other reason is that there
are low-level systems-oriented programs such as operating systems ker-
nels, device drivers, garbage collectors, networking software, etc., that are
difficult to write in safe languages and are usually written in a combina-
tion of C and machine code. But don’t lose hope: research in programming
language has made great strides of the last two decades, and there is an

Lecture 22: Programs as Data: The C0VM 3

ongoing effort at Carnegie Mellon to build an operating system based on
a safe language that is a cousin of C. So perhaps we won’t be tied to an
unsafe language and a flood of security patches forever.

Implementing a virtual machine is actually one of the applications where
even today C is usually the language of choice. That’s because C gives you
control over the memory layout of data, and also permits the kind of op-
timizations that are crucial to make a virtual machine efficient. Here, we
don’t care so much about efficiency, being mostly interested in correctness
and clarity, but we still use C to implement the C0VM.

1 A Stack Machine

The C0VM is a stack machine. This means that the evaluation of expressions
uses a stack, called the operand stack. It is written from left to right, with the
rightmost element denoting the top of the stack.

We begin with a simple example, evaluating an expression without
variables:

(3+4)*5/2

In the table below we show the virtual machine instruction on the left, in
textual form, and the operand stack after the instruction on the right has
been executed. We write ‘·’ for the empty stack.

Instruction Operand Stack
·

bipush 3 3
bipush 4 3, 4
iadd 7
bipush 5 7, 5
imul 35
bipush 2 35, 2
idiv 17

The translation of expressions to instructions is what a compiler would
normally do. Here we just write the instructions by hand, in effect simulat-
ing the compiler. The important part is that executing the instructions will
compute the correct answer for the expression. We always start with the
empty stack and end up with the answer as the only item on the stack.

Lecture 22: Programs as Data: The C0VM 4

In the C0VM, instructions are represented as bytes. This means we have
at most 256 different instructions. Some of these instructions require more
than one byte. For example, the bipush instruction requires a second byte
for the number to push onto the stack. The following is an excerpt from the
C0VM reference, listing only the instructions needed above.

0x10 bipush S -> S,b
0x60 iadd S,x,y -> S,x+y
0x68 imul S,x,y -> S,x*y
0x6C idiv S,x,y -> S,x/y

On the right-hand side we see the effect of the operation on the stack S.
Using these instructions, we can translate the program into code.

Code Instruction Operand Stack
·

10 03 bipush 3 3
10 04 bipush 4 3, 4
60 iadd 7
10 05 bipush 5 7, 5
68 imul 35
10 02 bipush 2 35, 2
6C idiv 17

In the figure above, and in the rest of these notes, we always show bytecode
in hexadecimal form, without the 0x prefix. In a binary file that contains
this program we would just see the bytes

10 03 10 04 60 10 05 68 10 02 6C

and it would be up to the C0VM implementation to interpret them appro-
priately. The file format we use is essentially this, except we don’t use bi-
nary but represent the hexadecimal numbers as strings separated by white-
space, literally as written in the display above.

2 Compiling to Bytecode

The cc0 compiler provides an option -b to generate bytecode. You can use
this to experiment with different programs to see what they translate to.
For the simple arithmetic expression from the previous section we could
create a file ex1.c0:

Lecture 22: Programs as Data: The C0VM 5

int main() {
return (3+4)*5/2;

}

We compile it with

% cc0 -b ex1.c0

which will write a file ex1.bc0. In the current version of the compiler, this
has the following content:

1 C0 C0 FF EE # magic number
2 00 13 # version 9, arch = 1 (64 bits)
3

4 00 00 # int pool count
5 # int pool
6

7 00 00 # string pool total size
8 # string pool
9

10 00 01 # function count
11 # function_pool
12

13 #<main>
14 00 00 # number of arguments = 0
15 00 00 # number of local variables = 0
16 00 0C # code length = 12 bytes
17 10 03 # bipush 3 # 3
18 10 04 # bipush 4 # 4
19 60 # iadd # (3 + 4)
20 10 05 # bipush 5 # 5
21 68 # imul # ((3 + 4) * 5)
22 10 02 # bipush 2 # 2
23 6C # idiv # (((3 + 4) * 5) / 2)
24 B0 # return #
25

26 00 00 # native count
27 # native pool

We will explain various parts of this file later on.
It consists of a sequence of bytes, each represented by two hexadecimal

digits. In order to make the bytecode readable, it also includes comments.
Each comment starts with # and extends to the end of the line. Comments

Lecture 22: Programs as Data: The C0VM 6

are completely ignored by the virtual machine and are there only for you
to read.

We focus on the section starting with #<main>. The first three lines

13 #<main>
14 00 00 # number of arguments = 0
15 00 00 # number of local variables = 0
16 00 0C # code length = 12 bytes

tell the virtual machine that the function main takes no arguments, uses no
local variables, and its code has a total length of 12 bytes (0x0C in hex). The
next few lines embody exactly the code we wrote by hand. The comments
first show the virtual machine instruction in symbolic form and then the
expression in the source code that was translated to the corresponding byte
code.

17 10 03 # bipush 3 # 3
18 10 04 # bipush 4 # 4
19 60 # iadd # (3 + 4)
20 10 05 # bipush 5 # 5
21 68 # imul # ((3 + 4) * 5)
22 10 02 # bipush 2 # 2
23 6C # idiv # (((3 + 4) * 5) / 2)
24 B0 # return #

The return instruction at the end means that the function returns the value
that is currently the only one on the stack. When this function is exe-
cuted, this will be the value of the expression shown on the previous line,
(((3 + 4) * 5) / 2).

As we proceed through increasingly complex language constructs, you
should experiment yourself, writing C0 programs, compiling them to byte
code, and testing your understanding by checking that it is as expected (or
at least correct).

3 Local Variables

So far, the only part of the runtime system that we needed was the local
operand stack. Next, we add the ability to handle function arguments and
local variables to the machine. For that purpose, a function has an array
V containing local variables. We can push the value of a local variable onto
the operand stack with the vload instruction, and we can pop the value
from the top of the stack and store it in a local variable with the vstore

Lecture 22: Programs as Data: The C0VM 7

instruction. Initially, when a function is called, its arguments x0, . . . , xn−1

are stored as local variables V [0], . . . , V [n− 1].
Assume we want to implement the function mid.

1 int mid(int lo, int hi) {
2 int mid = lo + (hi - lo)/2;
3 return mid;
4 }

Here is a summary of the instructions we need

0x15 vload <i> S -> S,v (v = V[i])
0x36 vstore <i> S,v -> S (V[i] = v)
0x64 isub S,x,y -> S,x-y
0xB0 return .,v -> .

Notice that for return, there must be exactly one element on the stack. Us-
ing these instructions, we obtain the following code for our little function.
We indicate the operand stack on the right, using symbolic expressions to
denote the corresponding runtime values. The operand stack is not part of
the code; we just write it out as an aid to reading the program.

1 #<mid>
2 00 02 # number of arguments = 2
3 00 03 # number of local variables = 3
4 00 10 # code length = 16 bytes
5 15 00 # vload 0 # lo
6 15 01 # vload 1 # lo, hi
7 15 00 # vload 0 # lo, hi, lo
8 64 # isub # lo, (hi - lo)
9 10 02 # bipush 2 # lo, (hi - lo), 2

10 6C # idiv # lo, ((hi - lo) / 2)
11 60 # iadd # (lo + ((hi - lo) / 2))
12 36 02 # vstore 2 # mid = (lo + ((hi - lo) / 2));
13 15 02 # vload 2 # mid
14 B0 # return #

We can optimize this piece of code, simply removing the last vstore 2 and
vload 2, but we translated the original literally to clarify the relationship
between the function and its translation.

Lecture 22: Programs as Data: The C0VM 8

4 Constants

So far, the instruction bipush is the only way to introduce a constant
into the computation. Here, b is a signed byte, so that its possible values are
−128 ≤ b < 128. What if the computation requires a larger constant?

The solution for the C0VM and similar machines is not to include the
constant directly as arguments to instructions, but store them separately
in the byte code file, giving each of them an index that can be referenced
from instructions. Each segment of the byte code file is called a pool. For
example, we have a pool of integer constants. The instruction to refer to an
integer is ildc (integer load constant).

0x13 ildc <c1,c2> S -> S, x:w32 (x = int_pool[(c1<<8)|c2])

The index into the constant pool is a 16-bit unsigned quantity, given in two
bytes with the most significant byte first. This means we can have at most
216 = 65, 536 different constants in a byte code file.

As an example, consider a function that is part of a linear congruential
pseudo-random number generator. It generates the next pseudo-random
number in a sequence from the previous number.

int next_rand(int last) {
return last * 1664525 + 1013904223;

}

int main() {
return next_rand(0xdeadbeef);

}

There are three constants in this file that require more than one byte to rep-
resent: 1664252, 1013904223, and 0xdeadbeef. Each of them is assigned
an index in the integer pool. The constants are then pushed onto the stack
with the ildc instruction.

1 C0 C0 FF EE # magic number
2 00 13 # version 9, arch = 1 (64 bits)
3

4 00 03 # int pool count
5 # int pool
6 00 19 66 0D
7 3C 6E F3 5F
8 DE AD BE EF
9

Lecture 22: Programs as Data: The C0VM 9

10 00 00 # string pool total size
11 # string pool
12

13 00 02 # function count
14 # function_pool
15

16 #<main>
17 00 00 # number of arguments = 0
18 00 01 # number of local variables = 1
19 00 07 # code length = 7 bytes
20 13 00 02 # ildc 2 # c[2] = -559038737
21 B8 00 01 # invokestatic 1 # next_rand(-559038737)
22 B0 # return #
23

24

25 #<next_rand>
26 00 01 # number of arguments = 1
27 00 01 # number of local variables = 1
28 00 0B # code length = 11 bytes
29 15 00 # vload 0 # last
30 13 00 00 # ildc 0 # c[0] = 1664525
31 68 # imul # (last * 1664525)
32 13 00 01 # ildc 1 # c[1] = 1013904223
33 60 # iadd # ((last * 1664525) + 1013904223)
34 B0 # return #
35

36 00 00 # native count
37 # native pool

The comments denote the ith integer in the constant pool by c[i].
There are other pools in this file. The string pool contains string con-

stants. The function pool contains the information on each of the functions,
as explained in the next section. The native pool contains references to “na-
tive” functions, that is, library functions not defined in this file.

5 Function Calls

As already explained, the function pool contains the information on each
function which is the number of arguments, the number of local variables,
the code length, and then the byte code for the function itself. Each function

Lecture 22: Programs as Data: The C0VM 10

is assigned a 16-bit unsigned index into this pool. The main function always
has index 0. We call a function with the invokestatic instruction.

0xB8 invokestatic <c1,c2> S, v1, v2, ..., vn -> S, v

We find the function g at function_pool[c1<<8|c2], which must take n
arguments. After g(v1, . . . , vn) returns, its value v will be on the stack in-
stead of the arguments.

Execution of the function will start with the first instruction and ter-
minate with a return (which does not need to be the last byte code in the
function). So the description of functions themselves is not particularly
tricky, but the implementation of function calls is.

Let’s collect the kind of information we already know about the runtime
system of the virtual machine. We have a number of pools which come from
the byte code file. These pools are constant in that they never change when
the program executes.

Then we have the operand stack which expands and shrinks within each
function’s operation, and the local variable array which holds function argu-
ments and the local variables needed to execute the function body.

In order to correctly implement function calls and returns we need one
further runtime structure, the call stack. The call stack is a stack of so-called
frames. We now analyze what the role of the frames is and what they need
to contain.

Consider the situation where a function f is executing and calls a func-
tion g with n arguments. At this point, we assume that f has pushed the
arguments onto the operand stack. Now we need take the following steps:

1. Create a new local variable array Vg for the function g.

2. Pop the arguments from f ’s operand stack Sf and store them in g’s
local variable array Vg[0..n).

3. Push on the call stack a frame containing Vf , Sf , and the address of
the line of code where execution of f shall resume when we return.
This address is called the program counter. We write pcf for it.

4. Create a new (empty) operand stack Sg for g.

5. Start executing the code for g.

When the called function g returns, its return value is the only value on its
operand stack Sg. We need to do the following

Lecture 22: Programs as Data: The C0VM 11

1. Pop the last frame from the call stack. This frame holds Vf , Sf , and
pcf (the return address).

2. Take the return value from Sg and push it onto Sf .

3. Restore the local variable array Vf .

4. Deallocate any structs no longer required.

5. Continue with the execution of f at pcf .

Concretely, we suggest that a frame from the call stack contain the fol-
lowing information:

1. An array of local variables V .

2. The operand stack S.

3. A pointer to the function body.

4. The return address which specifies where to continue execution.

We recommend that you simulate the behavior of the machine on a sim-
ple function call sequence to make sure you understand the role of the call
stack.

6 Conditionals

The C0VM does not have if-then-else or conditional expressions. Like ma-
chine code and other virtual machines, it has conditional branches that jump
to another location in the code if a condition is satisfied and otherwise con-
tinue with the next instruction in sequence.

0x9F if_cmpeq <o1,o2> S, v1, v2 -> S (pc = pc+(o1<<8|o2) if v1 == v2)
0xA0 if_cmpne <o1,o2> S, v1, v2 -> S (pc = pc+(o1<<8|o2) if v1 != v2)
0xA1 if_icmplt <o1,o2> S, x:w32, y:w32 -> S (pc = pc+(o1<<8|o2) if x < y)
0xA2 if_icmpge <o1,o2> S, x:w32, y:w32 -> S (pc = pc+(o1<<8|o2) if x >= y)
0xA3 if_icmpgt <o1,o2> S, x:w32, y:w32 -> S (pc = pc+(o1<<8|o2) if x > y)
0xA4 if_icmple <o1,o2> S, x:w32, y:w32 -> S (pc = pc+(o1<<8|o2) if x <= y)
0xA7 goto <o1,o2> S -> S (pc = pc+(o1<<8|o2))

As part of the test, the arguments are popped from the operand stack. Each
of the branching instructions takes two bytes as arguments which describe
a signed 16-bit offset. If that is positive we jump forward, if it is negative we
jump backward in the program.

Lecture 22: Programs as Data: The C0VM 12

As an example, we compile the following loop, adding up odd numbers
to obtain perfect squares.

int main() {
int sum = 0;
for (int i = 1; i < 100; i += 2)
//@loop_invariant 0 <= i && i <= 100;
sum += i;

return sum;
}

The compiler currently produces somewhat idiosyncratic code, so what we
show below has been edited to make the correspondence to the source code
more immediate.

1 #<main>
2 00 00 # number of arguments = 0
3 00 02 # number of local variables = 2
4 00 23 # code length = 35 bytes
5 10 00 # bipush 0 # 0
6 36 00 # vstore 0 # sum = 0;
7 10 01 # bipush 1 # 1
8 36 01 # vstore 1 # i = 1;
9 # <00:loop>

10 15 01 # vload 1 # i
11 10 64 # bipush 100 # 100
12 A2 00 14 # if_icmpge 20 # if (i >= 100) goto <01:endloop>
13 15 00 # vload 0 # sum
14 15 01 # vload 1 # i
15 60 # iadd #
16 36 00 # vstore 0 # sum += i;
17 15 01 # vload 1 # i
18 10 02 # bipush 2 # 2
19 60 # iadd #
20 36 01 # vstore 1 # i += 2;
21 A7 FF EB # goto -21 # goto <00:loop>
22 # <01:endloop>
23 15 00 # vload 0 # sum
24 B0 # return #

The compiler has embedded symbolic labels in this code, like <00:loop>
and <01:endloop> which are the targets of jumps or conditional branches.

Lecture 22: Programs as Data: The C0VM 13

In the actual byte code, they are turned into relative offsets. For example, if
we count forward 20 bytes, starting from A2 (the byte code of if_icmpge,
the negation of the test i < 100 in the source) we land at <01:endloop>
which labels the vload 0 instruction just before the return. Similarly, if we
count backwards 21 bytes from A7 (which is a goto), we land at <00:loop>
which starts with vload 1.

7 The Heap

In C0, structs and arrays can only be allocated on the system heap. The
virtual machine must therefore also provide a heap in its runtime system.
If you implement this in C, the simplest way to do this is to use the runtime
heap of the C language to implement the heap of the C0VM byte code that
you are interpreting. One can use a garbage collector for C such as libgc
in order to manage this memory. We can also sidestep this difficulty by
assuming that the C0 code we interpret does not run out of memory.

We have two instructions to allocate memory.

0xBB new <s> S -> S, a:* (*a is now allocated, size <s>)
0xBC newarray <s> S, n:w32 -> S, a:* (a[0..n) now allocated)

The new instructions takes a size s as an argument, which is the size (in
bytes) of the memory to be allocated. The call returns the address of the
allocated memory. It can also fail with an exception, in case there is insuffi-
cient memory available, but it will never return NULL. newarray also takes
the number n of elements from the operand stack, so that the total size of
allocated space is n ∗ s bytes.

For a pointer to a struct, we can compute the address of a field by using
the aaddf instruction. It takes an unsigned byte offset f as an argument,
pops the address a from the stack, adds the offset, and pushes the resulting
address a+ f back onto the stack. If a is null, an error is signaled, because
the address computation would be invalid.

0x62 aaddf <f> S, a:* -> S, (a+f):* (a != NULL; f field offset)

To access memory at an address we have computed we have the mload
and mstore family of instructions. They vary, depending on the size of data
that are loaded from or stored to memory.

0x2E imload S, a:* -> S, x:w32 (x = *a, a != NULL, load 4 bytes)
0x2F amload S, a:* -> S, b:* (b = *a, a != NULL, load address)
0x4E imstore S, a:*, x:w32 -> S (*a = x, a != NULL, store 4 bytes)
0x4F amstore S, a:*, b:* -> S (*a = b, a != NULL, store address)

Lecture 22: Programs as Data: The C0VM 14

They all consume an address from the operand stack. imload reads a 4-
byte value from the given memory address and pushes it on the operand
stack. imstore pops a 4-byte value from the operand stack and stores it at
the given address. The amload and amstore versions load and store and
address, respectively. There are also cmload and cmstore explained in the
next section for single-byte loads and stores.

As an example, consider the following struct declaration and function.

1 struct point {
2 int x;
3 int y;
4 };
5 typedef struct point* point;
6

7 point reflect(point p) {
8 point q = alloc(struct point);
9 q->x = p->y;

10 q->y = p->x;
11 return q;
12 }

The reflect function is compiled to the following code. When reading this
code, recall that q->x, for example, stands for (*q).x. In the comments,
the compiler writes the address of the x field in the struct pointed to by q
as &q->x, in analogy with C’s address-of operator &.

1 #<reflect>
2 00 01 # number of arguments = 1
3 00 02 # number of local variables = 2
4 00 1B # code length = 27 bytes
5 BB 08 # new 8 # alloc(struct point)
6 36 01 # vstore 1 # q = alloc(struct point);
7 15 01 # vload 1 # q
8 62 00 # aaddf 0 # &q->x
9 15 00 # vload 0 # p

10 62 04 # aaddf 4 # &p->y
11 2E # imload # p->y
12 4E # imstore # q->x = p->y;
13 15 01 # vload 1 # q
14 62 04 # aaddf 4 # &q->y
15 15 00 # vload 0 # p
16 62 00 # aaddf 0 # &p->x

Lecture 22: Programs as Data: The C0VM 15

17 2E # imload # p->x
18 4E # imstore # q->y = p->x;
19 15 01 # vload 1 # q
20 B0 # return #

We see that in this example, the size of a struct point is 8 bytes, 4 each
for the x and y fields. You should scrutinize this code carefully to make
sure you understands how structs work.

Array accesses are similar, except that the address computation takes
an index i from the stack. The size of the array elements is stored in the
runtime structure, so it is not passed as an explicit argument. Instead, the
byte code interpreter must retrieve the size from memory. The following is
our sample program.

1 int main() {
2 int[] A = alloc_array(int, 100);
3 for (int i = 0; i < 100; i++)
4 A[i] = i;
5 return A[99];
6 }

Showing only the loop, we have the code below (again slightly edited).
Notice the use of aadds to consume A and i from the stack, pushing &A[i]
onto the stack.

1 # <00:loop>
2 15 01 # vload 1 # i
3 10 64 # bipush 100 # 100
4 9F 00 15 # if_icmpge 21 # if (i >= 100) goto <01:endloop>
5 15 00 # vload 0 # A
6 15 01 # vload 1 # i
7 63 # aadds # &A[i]
8 15 01 # vload 1 # i
9 4E # imstore # A[i] = i;

10 15 01 # vload 1 # i
11 10 01 # bipush 1 # 1
12 60 # iadd #
13 36 01 # vstore 1 # i += 1;
14 A7 FF EA # goto -22 # goto <00:loop>
15 # <01:endloop>

There is a further subtlety regarding booleans and characters stored in
memory, as explained in the next section.

Lecture 22: Programs as Data: The C0VM 16

8 Characters and Strings

Characters in C0 are ASCII characters in the range from 0 ≤ c < 128.
Strings are sequences of non-NULL characters. While C0 does not pre-
scribe the representation, we follow the convention of C to represent them
as an array of characters, terminated by ’\0’ (NUL). Arrays (and therefore
strings) are manipulated via their addresses, and therefore add to the types
we denote by a:*.

But what about constant strings appearing in the program? For them,
we introduce the string pool as another section of the byte code file. This
pool consists of a sequence of strings, each of them terminated by ’\0’,
represented as the byte 0x00. Consider the program

#use <string>
#use <conio>

int main() {
string h = "Hello ";
string hw = string_join(h, "World!\n");
print(hw);
return string_length(hw);

}

There are two string constants, "Hello " and "World!\n". In the byte code
file below they are stored in the string pool at index positions 0 and 7.

1 C0 C0 FF EE # magic number
2 00 13 # version 9, arch = 1 (64 bits)
3

4 00 00 # int pool count
5 # int pool
6

7 00 0F # string pool total size
8 # string pool
9 48 65 6C 6C 6F 20 00 # "Hello "

10 57 6F 72 6C 64 21 0A 00 # "World!\n"

In the byte code program, we access these strings by pushing their address
onto the stack using the aldc instruction.

0x14 aldc <c1,c2> S -> S, a:* (a = &string_pool[(c1<<8)|c2])

We can see its use in the byte code for the main function.

Lecture 22: Programs as Data: The C0VM 17

1 #<main>
2 00 00 # number of arguments = 0
3 00 02 # number of local variables = 2
4 00 1B # code length = 27 bytes
5 14 00 00 # aldc 0 # s[0] = "Hello "
6 36 00 # vstore 0 # h = "Hello ";
7 15 00 # vload 0 # h
8 14 00 07 # aldc 7 # s[7] = "World!\n"
9 B7 00 00 # invokenative 0 # string_join(h, "World!\n")

10 36 01 # vstore 1 # hw = string_join(h, "World!\n");
11 15 01 # vload 1 # hw
12 B7 00 01 # invokenative 1 # print(hw)
13 57 # pop # (ignore result)
14 15 01 # vload 1 # hw
15 B7 00 02 # invokenative 2 # string_length(hw)
16 B0 # return #

Another noteworthy aspect of the code is the use of native functions with
index 0, 1, and 2. For each of these, the native pool contains the number of
arguments and an internal index.

1 00 03 # native count
2 # native pool
3 00 02 00 4E # string_join
4 00 01 00 06 # print
5 00 01 00 4F # string_length

There is a further subtle point regarding the memory load and store
instructions and their interaction with strings. As we can see from the
string pool representation, a character takes only one byte of memory. The
operand stack and local variable array maintains all primitive types as 4-
byte quantities. We need to mediate this difference when loading or storing
characters. Booleans similarly take only one byte, where 0 stands for false
and 1 for true. For this purpose, the C0VM has variants of the mload and
mstore instructions that load and store only a single byte.

0x34 cmload S, a:* -> S, x:w32 (x = (w32)(*a), a != NULL, load 1 byte)
0x55 cmstore S, a:*, x:w32 -> S (*a = x & 0x7f, a != NULL, store 1 byte)

As part of the load operation we have to convert the byte to a four-byte
quantity to be pushed onto the stack; when writing we have to mask out
the upper bits. Because characters c in C0 are in the range 0 ≤ c < 128 and

Lecture 22: Programs as Data: The C0VM 18

booleans are represented by just 0 (for false) and 1 (for true), we exploit
and enforce that all bytes represent 7-bit unsigned quantities.

9 Byte Code Verification

So far, we have not discussed any invariants to be satisfied by the informa-
tion stored in the byte code file. What are the invariants for code, encoded
as data? How do we establish them?

We can try to derive this from the program that interprets the byte-
code. First, we would like to check that there is a valid instruction at every
address we can reach when the program is executed. This is slightly com-
plicated by forward and backward conditional branches and jumps, but
overall not too difficult to check. We also want to check that all local vari-
ables used are less that num_vars, so that references V [i] will always be in
bounds. Further, we check that when a function returns, there is exactly
one value on the stack. This is more difficult to check, again due to condi-
tional branches and jumps, because the stack grows and shrinks. As part
of this we should also verify that at any given instruction there are enough
items on the stack to execute the instruction, for example, at least two for
iadd.

These and a few other checks are performed by byte code verification of
the Java Virtual Machine (JVM). The most important one we omitted here
is type checking. It is not relevant for the C0VM because we simplified the
file format by eliminating type information. After byte code verification, a
number of runtime checks can be avoided because we have verified stat-
ically that they cannot occur. Realistic byte code verification is far from
trivial, but we see here that it just establishes a data structure invariant for
the byte code interpreter.

It is important to recognize that there are limits to what can be done
with bytecode verification before the code is executed. For example, we
can not check in general if division might try to divide by 0, or if the pro-
gram will terminate. There is a lot of research in the area of programming
languages concerned with pushing the boundaries of static verification, in-
cluding here at Carnegie Mellon University. Perhaps future instances of
this course will benefit from this research by checking your C0 program in-
variants, at least to some extent, and pointing out bugs before you ever run
your program just like the parser and type checker do.

Lecture 22: Programs as Data: The C0VM 19

10 Implementing the C0VM

For some information, tips, and hints for implementing the C0VM in C we
refer the reader to the the C0VM writeup and starter code.

Lecture 22: Programs as Data: The C0VM 20

11 C0VM Instruction Reference

C0VM Instruction Reference

S = operand stack
V = local variable array, V[0..num_vars)

Instruction operands:
<i> = local variable index (unsigned)
 = byte (signed)
<s> = element size in bytes (unsigned)
<f> = field offset in struct in bytes (unsigned)
<c> = <c1,c2> = pool index = (c1<<8|c2) (unsigned)
<o> = <o1,o2> = pc offset = (o1<<8|o2) (signed)

Stack operands:
a : * = address ("reference")
x, i, n : w32 = 32 bit word representing an int, bool, or char ("primitive")
v = arbitrary value (v:* or v:w32)

Stack operations
0x59 dup S, v -> S, v, v
0x57 pop S, v -> S
0x5F swap S, v1, v2 -> S, v2, v1

Arithmetic
0x60 iadd S, x:w32, y:w32 -> S, x+y:w32
0x7E iand S, x:w32, y:w32 -> S, x&y:w32
0x6C idiv S, x:w32, y:w32 -> S, x/y:w32
0x68 imul S, x:w32, y:w32 -> S, x*y:w32
0x80 ior S, x:w32, y:w32 -> S, x|y:w32
0x70 irem S, x:w32, y:w32 -> S, x%y:w32
0x78 ishl S, x:w32, y:w32 -> S, x<<y:w32
0x7A ishr S, x:w32, y:w32 -> S, x>>y:w32
0x64 isub S, x:w32, y:w32 -> S, x-y:w32
0x82 ixor S, x:w32, y:w32 -> S, x^y:w32

Local Variables
0x15 vload <i> S -> S, v (v = V[i])
0x36 vstore <i> S, v -> S (V[i] = v)

Assertions and errors
0xBF athrow S, a:* -> S (c0_user_error(a))
0xCF assert S, x:w32, a:* -> S (c0_assertion_failure(a) if x == 0)

Lecture 22: Programs as Data: The C0VM 21

Constants
0x01 aconst_null S -> S, null:*
0x10 bipush S -> S, x:w32 (x = (w32)b, sign extended)
0x13 ildc <c1,c2> S -> S, x:w32 (x = int_pool[(c1<<8)|c2])
0x14 aldc <c1,c2> S -> S, a:* (a = &string_pool[(c1<<8)|c2])

Control Flow
0x00 nop S -> S
0x9F if_cmpeq <o1,o2> S, v1, v2 -> S (pc = pc+(o1<<8|o2) if v1 == v2)
0xA0 if_cmpne <o1,o2> S, v1, v2 -> S (pc = pc+(o1<<8|o2) if v1 != v2)
0xA1 if_icmplt <o1,o2> S, x:w32, y:w32 -> S (pc = pc+(o1<<8|o2) if x < y)
0xA2 if_icmpge <o1,o2> S, x:w32, y:w32 -> S (pc = pc+(o1<<8|o2) if x >= y)
0xA3 if_icmpgt <o1,o2> S, x:w32, y:w32 -> S (pc = pc+(o1<<8|o2) if x > y)
0xA4 if_icmple <o1,o2> S, x:w32, y:w32 -> S (pc = pc+(o1<<8|o2) if x <= y)
0xA7 goto <o1,o2> S -> S (pc = pc+(o1<<8|o2))

Functions
0xB8 invokestatic <c1,c2> S, v1, v2, ..., vn -> S, v

(function_pool[c1<<8|c2] => g, g(v1,...,vn) = v)
0xB0 return ., v -> . (return v to caller)
0xB7 invokenative <c1,c2> S, v1, v2, ..., vn -> S, v

(native_pool[c1<<8|c2] => g, g(v1,...,vn) = v)

Memory
0xBB new <s> S -> S, a:* (*a is now allocated, size <s>)
0xBC newarray <s> S, n:w32 -> S, a:* (a[0..n) now allocated,

each array element has size <s>)
0xBE arraylength S, a:* -> S, n:w32 (n = \length(a))
0x62 aaddf <f> S, a:* -> S, (a+f):* (a != NULL; f field offset in bytes)
0x63 aadds S, a:*, i:w32 -> S, (a->elems+s*i):*

(a != NULL, 0 <= i < \length(a))

0x34 cmload S, a:* -> S, x:w32 (x = (w32)(*a), a != NULL, load 1 byte)
0x55 cmstore S, a:*, x:w32 -> S (*a = x & 0x7f, a != NULL, store 1 byte)
0x2E imload S, a:* -> S, x:w32 (x = *a, a != NULL, load 4 bytes)
0x4E imstore S, a:*, x:w32 -> S (*a = x, a != NULL, store 4 bytes)
0x2F amload S, a:* -> S, b:* (b = *a, a != NULL, load address)
0x4F amstore S, a:*, b:* -> S (*a = b, a != NULL, store address)

	A Stack Machine
	Compiling to Bytecode
	Local Variables
	Constants
	Function Calls
	Conditionals
	The Heap
	Characters and Strings
	Byte Code Verification
	Implementing the C0VM
	C0VM Instruction Reference

