
Linked Lists



// typedef ______* queue_t;

bool queue_empty(queue_t S)    // O(1) 
/*@requires S != NULL; @*/ ;

queue_t queue_new()                // O(1)
/*@ensures \result != NULL; @*/
/*@ensures queue_empty(\result); @*/ ;

void enq(queue_t S, int x)           // O(1)
/*@requires S != NULL; @*/
/*@ensures !queue_empty(S); @*/ ;

int deq(queue_t S)                      // O(1)
/*@requires S != NULL; @*/
/*@requires !queue_empty(S); @*/ ;

say int for a changesay int for a change

Towards Queues
Queue Interface

3  7  2 deqenq

0 1 2

3 7 2

create new arrays each time?

where is the front? the back?

move elements around?

H
ow

// Implementation-side type
struct queue_header {
int[] data;

};
typedef struct queue_header queue;

// Client type
typedef queue* queue_t;

 We want to implement the queue library
o So far we only wrote client code using its

interface

 A queue stores a bunch of elements of
the same type
o Idea: represent a queue as an array

o But …
arrays have fixed length yet queues are unbounded
how would we add and remove elements?
 can we achieve the complexity goals?

say int for a change

W
ha

t



// typedef ______* queue_t;

bool queue_empty(queue_t S)    // O(1) 
/*@requires S != NULL; @*/ ;

queue_t queue_new()                // O(1)
/*@ensures \result != NULL; @*/
/*@ensures queue_empty(\result); @*/ ;

void enq(queue_t S, int x)           // O(1)
/*@requires S != NULL; @*/
/*@ensures !queue_empty(S); @*/ ;

int deq(queue_t S)                      // O(1)
/*@requires S != NULL; @*/
/*@requires !queue_empty(S); @*/ ;

Toward Queues

 A queue stores a bunch of elements of
the same type
oRepresent a queue as an array

 We want something like an array
but where
owe can add/remove elements at the beginning and end
o have it grow and shrink as needed

 Some kind of disembodied array …

Queue Interface

3  7  2 deqenq



3 7 2

Adding an element adds a cell,
removing an element removes a cell

But how to reach elements after the first?



Toward Queues

 A disembodied array
o how to reach the elements after the first?

 Use pointers to go to the next element

 This is called a linked list

// typedef ______* queue_t;

bool queue_empty(queue_t S)    // O(1) 
/*@requires S != NULL; @*/ ;

queue_t queue_new()                // O(1)
/*@ensures \result != NULL; @*/
/*@ensures queue_empty(\result); @*/ ;

void enq(queue_t S, int x)           // O(1)
/*@requires S != NULL; @*/
/*@ensures !queue_empty(S); @*/ ;

int deq(queue_t S)                      // O(1)
/*@requires S != NULL; @*/
/*@requires !queue_empty(S); @*/ ;

Queue Interface

3  7  2 deqenq 3 7 2



Linked Lists



Lists of Nodes

 Linked lists use pointers to go to the next element

o each block is called a node

Let’s implement it:
 a node consists of
o a data element
o a pointer to the next node

 The whole list is a pointer to its first node

3 7 2

struct list_node {
int data;
struct list_node* next;
};

an int here



Lists of Nodes

 Linked lists are a recursive type
o a struct list_node is defined in terms of itself

 What if we don’t have this pointer?
a node that contains an int and
a node that contains an int and
a node that contains an int and
…

o It would take an infinite amount of memory!
o The C0 compiler disallows this
 recursion can only occur behind a pointer (or an array)

3 7 2

struct list_node {
int data;
struct list_node* next;
};

3
7
2
.
.
.



Lists of Nodes

 Let’s make it more readable

 Implementing this linked list
list* L = alloc(list);
L->data = 3;
L->next = alloc(list);
L->next->data = 7;
L->next->next = alloc(list);
L->next->next->data = 2;

3 7 2

typedef struct list_node list; // ADDED

struct list_node {
int data;
list* next; // MODIFIED

};

struct list_node {
int data;
struct list_node* next;
};

This can go before
or after the struct

L



Lists of Nodes

 Does this help us implement queues?
o Linked lists can be arbitrarily large or small
use just the nodes we need
 size is not fixed like arrays

o It’s easy to insert an element at the beginning
allocate a new node and point its next field to the list

o In fact, it’s easy to insert an element between any two nodes
allocate a new node and move pointers around

 What about inserting an element at the end?
oHow do we indicate the end of a linked list?

3 7 2

So far we just drew
an empty box …



The End of a List

We need to make the pointer in the last node special

 Use the NULL pointer

This is a NULL-terminated list

 Point it to a special node we keep track of somewhere

We know we reached the end of the list if its
next field is equal to the address of the dummy node

 Have it point to itself

3 7 2

3 7 2

3 7 2

3 7 2

This is a great idea if we
don’t need direct access

to the end of the list

This is a great idea if we
do need direct access

to the end of the list

This node is called
the dummy node

or the sentinel

This works too, but nobody does that



List Segments



Lists with a Dummy Node

 We need to keep track of two pointers

o start: where the first node is
o end: the address in the next field of the last node
 the address of the dummy node

 What’s in the dummy node?
o some values that are not important to us
 some number and some pointer

owe say its fields are unspecified
no way to test for “unspecified”

3 7 2

start end

These values are not special in any way:
• data could be any element
• next may or may not be NULL



List Segments

 There may be more nodes before and after

o The pair of pointers start and end identify our list exactly
 start is inclusive (the first node of the list)
end is exclusive (one past the last node of the list)

o They identify the list segment [start, end)
 here it contain values 3, 7 and 2

 similar to array segments A[lo, hi)

3 7 2

start end

9 23 42 18 …

points to the
dummy node



List Segments

 There are many list segments in a list

o The list segment [C, F) contains elements 3, 7, 2
 its dummy node has field values 42 and the pointer G

o The list segment [A, G) contains 9, 23, 3, 7, 2, 42
 its dummy node has field values 18 and the some pointer

o The list segment [B, D) contains 23, 3
 its dummy node has field values 7 and the pointer E

o The list segment [C, C) contains no elements
 its dummy node has field values 3 and the pointer D

 this is the empty segment
any segment where start is the same as end
 [A, A), [B, B), …

3 7 2

C

9 23 42 18 …

BA FED G



Checking for List Segments

 We want to write a specification function that checks that 
two pointers start and end form a list segment
o Follow the next pointer from start until we reach end

oDoes this work?
 the dereference l->next may not be safe
 we need NULL-checks!

we never return false

bool is_segment(list* start, list* end) {
list* l = start;
while (l != end) {
l = l->next;

}
return true;

}

typedef struct list_node list;
struct list_node {

int data;
list* next;

};

3 7 2

start

end



12

dereferences
NULL



Checking for List Segments

 We want to write a specification function that checks that 
two pointers start and end form a list segment
o Follow the next pointer from start until we reach end

oDoes this work?
 if there is a list segment from start to end, it will return true
 if it returns false, there is no list segment from start to end

o It works then …

bool is_segment(list* start, list* end) {
list* l = start;
while (l != NULL) { // MODIFIED
if (l == end) return true; // ADDED
l = l->next;

}
return false; // MODIFIED

}

typedef struct list_node list;
struct list_node {

int data;
list* next;

};

3 7 2

start

end

12

returns false



Checking for List Segments

 A function that checks that start and end form a list segment

oCan there be no list segment but it does not return false
 if start points to a list containing a cycle

We need to be sure there are no cycles

bool is_segment(list* start, list* end) {
list* l = start;
while (l != NULL) {
if (l == end) return true; 
l = l->next;

}
return false; 

}

typedef struct list_node list;
struct list_node {

int data;
list* next;

};

3 7 2

start

end

12 Loops for ever

 if there is a list segment from start
to end, it will return true

 if it returns false, there is no list 
segment from start to end





Checking for List Segments

 A function that checks that start and end form a list segment
oWe need to be sure there are no cycles

oDoes this work?
Yes!

bool is_segment(list* start, list* end)
//@requires is_acyclic(start); // ADDED
{
list* l = start;
while (l != NULL) {
if (l == end) return true; 
l = l->next;

}
return false; 

}

typedef struct list_node list;
struct list_node {

int data;
list* next;

};

3 7 2

start

end

12

Fails
precondition

We will implement it later





Checking for List Segments

 A function that checks that start and end form a list segment

oNotes:
 returns false if start == NULL
or if end == NULL
 NULL is not a pointer to a list node
 subsumes NULL-check for both start and end

bool is_segment(list* start, list* end)
//@requires is_acyclic(start);
{
list* l = start;
while (l != NULL) {
if (l == end) return true; 
l = l->next;

}
return false; 

}

typedef struct list_node list;
struct list_node {

int data;
list* next;

};



All 3 versions are equivalent

Checking for List Segments

 We can also write it more succinctly
o using a for loop

o recursively

bool is_segment(list* start, list* end)
//@requires is_acyclic(start);
{
for (list* l = start; l != NULL; l = l->next) {
if (l == end) return true; 

}
return false; 

}

typedef struct list_node list;
struct list_node {

int data;
list* next;

};

bool is_segment(list* start, list* end)
//@requires is_acyclic(start);
{
if (start == NULL) return false;
return start == end

|| is_segment(start->next, end); 
}

All 3 versions are equivalentAll 3 versions are equivalent



Detecting Cycles

 How to check if a list is cyclic?
oUse a counter and look for overflows
 very inefficient!
also, C0 pointers are 64 bits but ints are 32 bits

o Keep track of visited nodes somewhere
 in an array?
 in another list?

o Add a “visited” field to the nodes (a boolean)
we need to know the list is acyclic to initialize it to false!

oWhat then?

In C0, there are more
pointers than integers!

how big to make it?

array indices are 32 bits

how do we check it has no cycles?









Detecting Cycles

 The tortoise and hare algorithm
o Traverse the list using two pointers
 the tortoise starts at the beginning and moves by 1 step
 the hare starts just ahead of the tortoise and moves by 2 steps

o If the hare ever overtakes the tortoise, there is a cycle

bool is_acyclic(list* start) {
if (start == NULL) return true;
list* t = start; // tortoise
list* h = start->next; // hare
while (h != t) {
if (h == NULL || h->next == NULL) return true;
//@assert t != NULL; // hare hits NULL quicker
t = t->next; // tortoise moves by 1 step
h = h->next->next; // hare moves by 2 steps

}
//@assert h == t; // hare has overtaken tortoise
return false; 

}

Robert W. Floyd

by this dude



Detecting Cycles

 The tortoise and hare algorithm

 Does it fix our problem with is_segment?
o Too aggressive
o Exercise: fix it!

bool is_acyclic(list* start) {
if (start == NULL) return true;
list* t = start; // tortoise
list* h = start->next; // hare
while (h != t) {
if (h == NULL || h->next == NULL) return true;
//@assert t != NULL; // hare hits NULL quicker
t = t->next; // tortoise moves by 1 step
h = h->next->next; // hare moves by 2 steps

}
//@assert h == t; // hare has overtaken tortoise
return false; 

}

oReturns
 true if there is no cycle
 false if there is a cycle

3 7 2

start end

cycle after
segment

Hint: you need to
account for end



Manipulating List Segments



Deleting an Element

 How do we remove the node at
the beginning of a non-empty
list segment [start, end)?
and return the value in there

1. grab the value in the start node
2. move start to point to the next node
3. return the value

oComplexity: O(1)

3 7 2

start end

7 2

start end

int x = start->data;
start = start->next;
return x; 

3

Note: we are not “deleting”
the node, just making the
segment shorter

1

23
2

3

1

3 7 2

start end



Deleting an Element

 How do we remove the last
node of a non-empty list
segment [start, end)?
and return the value in there

owe must go from start
 end is one node too far

1. follow next until just before end
2. move end to that node
3. return its value

oComplexity: O(n)

3 7 2

start end
list* l = start;
while (l->next != end)

l = l->next;
end = l;
return l->data; 

23 7

start end

2
3

1

Notes:
• The old last node becomes the

new dummy node
• We are not “deleting” anything,

just making the segment shorter

2

3

1

3 7 2

Expensive!

start end



 How do we add a node
at the beginning of a
list segment [start, end)?

1. create a new node
2. set its data field to the value to add
3. set its next field to start
4. set start to it

oComplexity: O(1)

3 7 2

start end

7 2

start end

list* l = alloc(list);
l->data = x;
l->next = start;
start = l; 

Note: we are adding
a brand new node

5

2

3

1

4

35

5 3

1

2

4

3 7 2

start end

Inserting an Element



Inserting an Element

 How do we add a node
as the last node of a
list segment [start, end)?

1. create a new node
2. set its data field to the value to add
3. set its next field to end
4. point the old last node to it

oComplexity: O(n)

3 7 2

start end

2 5

start end

list* new_last = alloc(list);
new_last->data = x;
new_last->next = end;
list* l = start;
while (l->next != end)

l = l->next;
l->next = new_last; Note: we are adding a new last

node, but we modify the next
pointer of the old last node

2

3

1

73

5

4

1
2

3

4

4

Expensive!

5
3 7 2

start end



Inserting an Element

 How do we add a node
as the last node of a
list segment [start, end)?

oCan we do better?
1. set the data field of end to the value to add
2. set its next field to a new dummy node
3. set end to it

oComplexity: O(1)

3 7 2 5

start end

end->data = x;
end->next = alloc(list);
end = end->next;

Note: we are using the old dummy
node as the new last node, and
creating a new dummy

2

3

1

2
1 2

3

Much better!

2 5

start end

73

5
3 7 2

start end



Summary

 We will use this as a guide when implementing queues 
(and stacks) to achieve their complexity goals

at the beginning at the end

Inserting O(1) O(1)

Deleting O(1) O(n)

GoodGoodGood Bad



Implementing Queues



Queues as List Segments

 Implementing queues
oWe add and remove from opposite ends
oCost must be O(1)

 The front of the queue is the start of the segment
o because that’s where we remove elements from
 choosing the end would give deq cost O(n)

 The back of the queue is the end of the segment
 the dummy node

at the beginning at the end

Inserting O(1) O(1)

Deleting O(1) O(n)

3 7 2

front back
enqueue

here
dequeue

here



Queues as List Segments

 The front of the queue is the start of the segment
 The back of the queue is the end of the segment

3 7 2

typedef struct list_node list;
struct list_node {

int data;
list* next;

};

// Implementation-side type
struct queue_header { // Concrete type
list* front; // start of segment, where we deq
list* back; // end of segment, where we enq

};
typedef struct queue_header queue; // Internal name

// … rest of implementation …

// Client-side type (abstract)
typedef queue* queue_t;

front back
header

2  7  3 deqenq

Client view Implementation
view

Notice
the order



Queues as List Segments

 Internally, queues are values of
type queue*
omust be non-NULL
o front and back fields must bracket a valid list segment

typedef struct list_node list;
struct list_node {

int data;
list* next;

};

bool is_queue(queue* Q) {
return Q != NULL

&& is_acyclic(Q->front)
&& is_segment(Q->front, Q->back); 

}

struct queue_header {
list* front;
list* back;

};
typedef struct queue_header queue;

Q

a queue

3 7 2

front back

2  7  3 deqenq



Queues as List Segments

 Next we implement the operations exported by the 
interface

// typedef ______* queue_t;

bool queue_empty(queue_t S)    // O(1) 
/*@requires S != NULL; @*/ ;

queue_t queue_new()                // O(1)
/*@ensures \result != NULL; @*/
/*@ensures queue_empty(\result); @*/ ;

void enq(queue_t S, int x)           // O(1)
/*@requires S != NULL; @*/
/*@ensures !queue_empty(S); @*/ ;

int deq(queue_t S)                      // O(1)
/*@requires S != NULL; @*/
/*@requires !queue_empty(S); @*/ ;

Queue Interface



Queues as List Segments

 Enqueuing
o add at the back

o This is the code we wrote earlier with
 start changed to Q->front
end changed to Q->back

typedef struct list_node list;
struct list_node {

int data;
list* next;

};

int deq (queue* Q)
//@requires is_queue(Q);
//@requires !queue_empty(Q);
//@ensures is_queue(Q);
{
int x = Q->front->data;
Q->front = Q->front->next;
return x;

}

struct queue_header {
list* front;
list* back;

};
typedef struct queue_header queue;

 Dequeueing
o remove from the front

Cost is O(1)Cost is O(1)

Q

3 7 2

front back

void enq (queue* Q, int x)
//@requires is_queue(Q);
//@ensures is_queue(Q);
//@ensures !queue_empty(Q);
{
Q->back->data = x;
Q->back->next = alloc(list);
Q->back = Q->back->next;

}



Queues as List Segments

 The empty queue
o empty segment has start

equal to end

typedef struct list_node list;
struct list_node {

int data;
list* next;

};

queue* queue_new()
//@ensures is_queue(\result);
//@ensures queue_empty(\result);
{
queue* Q = alloc(queue);
Q->front = alloc(list);
Q->back = Q->front;

}

struct queue_header {
list* front;
list* back;

};
typedef struct queue_header queue;

 Creating a queue
owe create an empty queue

bool queue_empty(queue* Q)
//@requires is_queue(Q);
{

return Q->front == Q->back;
}

Q
front back

Cost is O(1)Cost is O(1)



Implementing Stacks



Stacks as List Segments

 Implementing stacks
oWe add and remove from the same end
oCost must be O(1)

 The top of the stack is the start of the segment
o because that’s where we add and remove elements
 choosing the end would give pop cost O(n)

 The floor of the stack is the end of the segment
 the dummy node

at the beginning at the end

Inserting O(1) O(1)

Deleting O(1) O(n)

3 7 2

top floor
(nothing on this end)push and pop 

here



Stack as List Segments

 The top and floor of the queue is the start of the segment

o The representation invariant is_stack is just like is_queue

3 7 2

typedef struct list_node list;
struct list_node {

int data;
list* next;

};

// Implementation-side type
struct stack_header { // Concrete type
list* top; // start of segment, where we push and pop
list* floor;

};
typedef struct stack_header stack; // Internal name

// … rest of implementation …

// Client-side type (abstract)
typedef stack* stack_t;

top floor
header

Client view Implementation
view

3
7
2



Stacks as List Segments

 Next we implement the operations exported by the 
interface

// typedef ______* stack_t;

bool stack_empty(stack_t S)     // O(1) 
/*@requires S != NULL; @*/ ;

stack_t stack_new()                 // O(1)
/*@ensures \result != NULL; @*/
/*@ensures stack_empty(\result); @*/ ;

void push(stack_t S, int x)        // O(1)
/*@requires S != NULL; @*/
/*@ensures !stack_empty(S); @*/ ;

int pop(stack_t S)                     // O(1)
/*@requires S != NULL; @*/
/*@requires !stack_empty(S); @*/ ;

Stack Interface

Also updated
to int elements



Code we wrote earlier
with start replaced with S->top

Stacks as List Segments
typedef struct list_node list;
struct list_node {

int data;
list* next;

};

int pop(stack* S)
//@requires is_stack(S);
//@requires !stack_empty(S);
//@ensures is_stack(S);
{
int x = S->top->data;
S->top = S->top->next;
return x;

}

struct stack_header {
list* top;
list* floor;

};
typedef struct stack_header stack;S

3 7 2

top floor

stack* stack_new()
//@ensures is_stack(\result);
//@ensures stack_empty(\result);
{
stack* S = alloc(stack);
S->top = alloc(list);
S->floor = S->top;
return S;

}

bool stack_empty(stack* S)
//@requires is_stack(S);
{

return S->top == S->floor;
}

Code we wrote earlier
with start replaced with S->top

Same code we wrote for queues
with front/back replaced with top/floor

Same code we wrote for queues
with front/back replaced with top/floor

Same code we wrote for queues
with front/back replaced with top/floor

void push(stack* S, int x)
//@requires is_stack(S);
//@ensures is_stack(S);
//@ensures !stack_empty(S);
{
list* l = alloc(list);
l->data = x;
l->next = S->top
S->top = l;

}

All O(1)All O(1)All O(1)All O(1)



Another Implementation of Stacks

 The floor field goes mostly unused
o only to check that a stack is empty

 We can get rid of it …
o… if we represent stacks as NULL-terminated lists

// Implementation-side type
struct stack_header { // Concrete type
list* top; // start of segment, where we push and pop

};
typedef struct stack_header stack; // Internal name

floor is gone

3 7 2

top
headerClient view

New
implementation

view

3
7
2

floor is gone

This is a great idea if we
don’t need direct access

to the end of the list



Another Implementation of Stacks

 Valid stacks are
o non-NULL and
o the top field is a NULL-terminated list
 i.e., is acyclic

 The empty stack has NULL
in the top field

 Nothing else changes!

stack* stack_new()
//@ensures is_stack(\result);
//@ensures stack_empty(\result);
{
stack* S = alloc(stack);
S->top = NULL;

}

bool stack_empty(stack* S)
//@requires is_stack(S);
{

return S->top == NULL;
}

bool is_stack(stack* S) {
return S != NULL

&& is_acyclic(S->top); 
}

top

S



Sharing



Stacks without Headers

 Since the header contains just one field,

owhy not get rid of it?

push and pop are now incorrect
 they modify the local stack variable but not the caller’s
 aliasing!

 it breaks the interface: NULL is now the empty stack

struct stack_header {
list* top;

};
typedef struct stack_header stack;

3 7 2

top
S

typedef list* stack; 3 7 2S





Stacks without Headers

 But we’re fine if we always return the updated stack

o Functions transform an input stack into an output stack
 this is a functional interface

typedef list* stack; 3 7 2S

// typedef ______* stack_t;

bool stack_empty(stack_t S) ;   // O(1) 

stack_t stack_new()                 // O(1)
/*@ensures stack_empty(\result); @*/ ;

stack_t push(stack_t S, int x)    // O(1)
/*@ensures !stack_empty(\result); @*/ ;

stack_t pop(stack_t S, int* res) // O(1)
/*@requires !stack_empty(S); @*/ ;

Functional stack Interface
No more

NULL checks

Our trick to return
two outputs



Functional Stacks

 How to create this stack?

equivalently

 but harder to read

3 7 2S
3
7
2

S

Client view Implementation
view

stack_t S = stack_empty();
S = push(S, 2);
S = push(S, 7);
S = push(S, 3);

stack_t S = push(push(push(stack_empty(), 2), 7), 3);



Functional Stacks

oWhat if now we do                                             ?

3 7 2S

stack_t S1 = push(S, 14);

3 7 2

S

14S1

The client has two stacks
 S with 3, 7, 2
 S1 with 14, 3, 7, 2

 In the implementation, they share a suffix
 the linked list 3, 7, 2 is shared

3
7
2

S

3
7
2

S

14
3
7
2

S1



Sharing

 A functional stack library supports sharing list suffixes
o This takes up much less space than our earlier implementation!
o The client has no idea

 What if we now do this?

stack_t S2 = push(S, 42);
stack_t S3 = pop(S, x_ptr); The variable S

is still around



Sharing

 What if we now do                                    ?stack_t S2 = push(S, 42);
stack_t S3 = pop(S, x_ptr);

3 7 2

S

14S1

42S2

S3

3
7
2

S

14
3
7
2

S1

42
3
7
2

S2

7
2S3

Client view
Implementation

view

o Lots more sharing!



Sharing

 If sharing is so great, why don’t our libraries always use it?
o It takes a change of mindset
using functions that don’t modify data structures in place

o A lot of code we write uses one instance of a data structure
So what? Sharing wouldn’t hurt anyway
 Good point

o It doesn’t work for all data structures
Try it on queues!

 Functional programming languages rely heavily on sharing



Wrap Up



What have we done?

 We introduced linked lists
and two common ways to use them
oNULL-terminated linked lists
o list segments

 We learned about list manipulations and their complexity

 We used them to implement stacks and queues

 We talked about sharing



Linked Lists vs. Arrays

 How do they compare?

 Question to help decide which one to use:
oCan we anticipate the size we need?
oDo they allow us to achieve our target complexity?

Arrays (unsorted) Linked lists

Pros

oO(1) access
o built-in

o self-resizing
oO(1) insertion*

oO(1) deletion*

* Given the right pointers

Cons
o fixed size
oO(n) insertion

oO(n) access
o no special syntax


	Linked Lists
	Towards Queues
	Toward Queues
	Toward Queues
	Linked Lists
	Lists of Nodes
	Lists of Nodes
	Lists of Nodes
	Lists of Nodes
	The End of a List
	List Segments
	Lists with a Dummy Node
	List Segments
	List Segments
	Checking for List Segments
	Checking for List Segments
	Checking for List Segments
	Checking for List Segments
	Checking for List Segments
	Checking for List Segments
	Detecting Cycles
	Detecting Cycles
	Detecting Cycles
	Manipulating List Segments
	Deleting an Element
	Deleting an Element
	Inserting an Element
	Inserting an Element
	Inserting an Element
	Summary
	Implementing Queues
	Queues as List Segments
	Queues as List Segments
	Queues as List Segments
	Queues as List Segments
	Queues as List Segments
	Queues as List Segments
	Implementing Stacks
	Stacks as List Segments
	Stack as List Segments
	Stacks as List Segments
	Stacks as List Segments
	Another Implementation of Stacks
	Another Implementation of Stacks
	Sharing
	Stacks without Headers
	Stacks without Headers
	Functional Stacks
	Functional Stacks
	Sharing
	Sharing
	Sharing
	Wrap Up
	What have we done?
	Linked Lists vs. Arrays

