
Pointers and Structs

Returning Multiple Values

Returning two Values from a Function

 We want to return
o the sum of all the elements in an array (an int) and
owhether 42 is in the array (a bool)

 How can we do that?

??? sum_and_42(int[] A, int n)
//@requires n == \length(A);
{
int sum = 0;
bool has_42 = false;
for (int i = 0; i < n; i++) {
sum += A[i];
if (A[i] == 42) has_42 = true;

}
}

C0 functions return
at most one value

int main() {
int[] A = alloc_array(int, 10);
for (int i = 0; i < 10; i++) A[i] = i - 5;

??? = sum_and_42(A, 10);
return 0;

}

C0 functions return
at most one value

Returning two Values from a Function

 A C0 function can communicate with its caller
o by returning a value to it or
o by modifying a value in allocated memory the caller shared with it

 Idea:
omain passes a 1-element int array S to sum_and_42
o sum_and_42 stores

the sum in S
o it returns whether 42

is in the array as a bool

Allocated MemoryLocal Memory

A 0 … n

S

main

sum_and_42
A

sum

0

sum goes
here

Returning two Values from a Function

 A C0 function can communicate with its caller
o by returning a value to it or
o by modifying a value in allocated memory the caller shared with it
 Idea: caller pass a 1-element int array to store the sum and function return

a bool

bool sum_and_42(int[] A, int n, int[] sum)
//@requires n == \length(A);
//@requires \length(sum) == 1;
{
sum[0] = 0;
bool has_42 = false;
for (int i = 0; i < n; i++) {
sum[0] += A[i];
if (A[i] == 42) has_42 = true;

}
return has_42;
}

int main() {
int[] A = alloc_array(int, 10);
for (int i = 0; i < 10; i++) A[i] = i - 5;

int[] S = alloc_array(int, 1);
bool b = sum_and_42(A, 10, S);
return 0;

}

Returning two Values from a Function

 Idea
o caller pass a 1-element int array to store the sum and
o function return a bool

 This is clunky: invoke the whole array machinery
for a single cell in
allocated memory!bool sum_and_42(int[] A, int n, int[] sum)

//@requires n == \length(A);
//@requires \length(sum) == 1;
{
sum[0] = 0;
bool has_42 = false;
for (int i = 0; i < n; i++) {
sum[0] += A[i];
if (A[i] == 42) has_42 = true;

}
return has_42;
}

int main() {
int[] A = alloc_array(int, 10);
for (int i = 0; i < 10; i++) A[i] = i - 5;

int[] S = alloc_array(int, 1);
bool b = sum_and_42(A, 10, S);
return 0;

}

Yuck!

Pointers

Memory Cells and Pointers

 C0 provides
o a way to create individual cells in allocated memory

alloc(int)

o and pointers to manipulate them

int* p = alloc(int)

Creates a new cell
in allocated memory

Type of the values
we can put in this cell

Returns the memory
address of the new cell

The memory address of
the new cell is stored in p

The type of pointers
to a cell that can

contain an int

Memory Cells and Pointers

int* p = alloc(int)
o creates a new cell
o the returned address

is stored in p

 Similar to arrays
o Specific addresses are not visible within the program
We write arrows

oMemory cells are
initialized to default
value for their type

Allocated MemoryLocal Memory

p 0x8C4
0x8c4

Allocated MemoryLocal Memory

p 0

This cell can
only contain an int

Default value
of type int

p can only* contain
addresses

to cells of type int
A cell of type int

An int pointer

* Well, almost. We’ll revisit this.

Working with Pointers

 We read and write to a memory cell through a pointer to it

*p

o This is called dereferencing p

printint(*p);
*p = 42;
printint(*p);

Follow the pointer
in p and return the

value in the cell

…
or write a new

value in the cell

Allocated MemoryLocal Memory

p 42

Prints 0

Puts 42 in the cell pointed by p

Prints 42

Aliasing

 Pointers are subject to aliasing …

int* q = p;
printint(*q);

*q = 7;
printint(*p);

Allocated MemoryLocal Memory

p 42

q

Allocated MemoryLocal Memory

p 7

q

Prints 7

Prints 42

q and p point to
the same cell

Garbage Collection

 … and memory cell are subject to garbage collection
owhen there is no way to access them

p = alloc(int);
*p = 3;
q = alloc(int);

Allocated MemoryLocal Memory

p
7

q
3

0

Functions on Pointers

o half is passed
the value of p
an address

o It modifies the same cell p points to
upon returning,

the cell pointed
by p contains 4

 Aliasing at work!

void half(int* x) {
*x = *x / 2;

}

int main() {
int* p = alloc (int);
*p = 9;
half(p);
assert(*p == 4);
return 0;

}

 A function that halves the content of an int cell

Alloc. Mem.Local Mem.

p
main

half
x

9

Alloc. Mem.Local Mem.

p
main

half
x

4

Here

There

Here

There

Decommissioned

Returning two Values from a Function

 This is how we solve our
problem using pointers
o caller pass an int* to store the sum and
o function return a bool

bool sum_and_42(int[] A, int n, int* sum)
//@requires n == \length(A);
{
*sum = 0;
bool has_42 = false;
for (int i = 0; i < n; i++) {
*sum += A[i];
if (A[i] == 42) has_42 = true;

}
return has_42;
}

int main() {
int[] A = alloc_array(int, 10);
for (int i = 0; i < 10; i++) A[i] = i - 5;

int* S = alloc(int);
bool b = sum_and_42(A, 10, S);
return 0;

}

Alloc. Mem.Local Mem.

A
0 … n

S

main

sum_and_42
A

sum

0

Default int

Returning two Values from a Function

 We can even share both
via allocated memory
o caller pass an int* to store the sum
o and a bool* to store whether 42 is

in the array

void sum_and_42(int[] A, int n, int* sum, bool* has_42)
//@requires n == \length(A);
{
*sum = 0;
*has_42 = false;
for (int i = 0; i < n; i++) {
*sum += A[i];
if (A[i] == 42) *has_42 = true;

}
}

int main() {
int[] A = alloc_array(int, 10);
for (int i = 0; i < 10; i++) A[i] = i - 5;

int* S = alloc(int);
bool* b = alloc(bool);
sum_and_42(A, 10, S, b);
return 0;

}

Alloc. Mem.Local Mem.

A
0 … n

S

main

sum_and_42

A

sum

0

b false

has_42

Default bool

Returning two Values from a Function

 Real world example

http://man7.org/linux/man-pages/man3/sincos.3.html

http://man7.org/linux/man-pages/man3/sincos.3.html

Summary

 Memory cells are kind of like 1-element arrays
o Live in allocated memory
o Subject to aliasing
oGarbage collected

 But they are not array!

o int* and int[] are distinct type
Not interchangeable!

--> int* p = alloc_array(int, 1);
<stdio>:1.10-1.29:error:type mismatch
expected: int*

found: int[]
--> int[] A = alloc(int);
<stdio>:1.11-1.21:error:type mismatch
expected: int[]

found: int*

Linux Terminal
Type error!Type error!

NULL

Double Pointers

 What does this do?
int** w = alloc(int*);

oCreate a cell that can contain an int*

 What is the default value of type int*?
o Let’s ask coin

 What is NULL?

Alloc. Mem.Local Mem.

w

Contains
an int*

Type int**

--> int** w = alloc(int*);
w is 0x1D75260 (int**)
--> *w;
NULL (int*)

Linux Terminal

NULL

 What is NULL?
o The default value of any pointer type
oDrawn as

 A value of pointer type can be either
o an address to a cell in allocated memory, or
oNULL

 We can check if a pointer is NULL

Alloc. Mem.Local Mem.

w

NULLType int**

--> w == NULL;
true (false)
--> *w == NULL;
true (bool)

Linux Terminal

NULL

 What is NULL good for?

oNULL is not the address of a memory cell
We can dereference addresses to memory cells
But, we are getting an error instead

 Dereferencing NULL is a safety violation

--> int** w = alloc(int*);
w is 0x1D75260 (int**)
--> *w;
NULL (int*)
--> **w;
Error: null pointer was accessed

Linux Terminal

Alloc. Mem.Local Mem.

w

We are accessing the value
contained in *w, i.e.,

we are dereferencing NULL

This is bad!

The Billion Dollar Mistake

 Tony Hoare introduced the NULL pointer
in Algol W in 1965

 Part of most imperative programming languages ever since
oC, C++, Python, Javascript, PHP, …

 One of the most error-prone programming constructs!

o Every time we dereference a pointer, we need to know it is not NULL
Many programmers forget
Endless source of bugs

This led me to suggest that the null value is a
member of every type, and a null check is

required on every use of that reference variable,
and it may be perhaps a billion dollar mistake.

-- Tony Hoare (InfoQ 2009 -- minute 27:40)

./a.out
attempt to dereference null pointer
Segmentation fault (core dumped)

Linux Terminal

Trillions by now

https://www.infoq.com/presentations/Null-References-The-Billion-Dollar-Mistake-Tony-Hoare/

Pointer Safety

Dereferencing NULL is a safety violation
 *p has the precondition

//@requires p != NULL;
o Every time we dereference a pointer, we need to have a reason

to believe it is not NULL
point-to reasoning!

 alloc(tp) has the postcondition
//@ensures \result != NULL;

--> int** w = alloc(int*);
w is 0x1D75260 (int**)
--> *w;
NULL (int*)

Linux Terminal

Is this safe?
YES: w != NULL by postcondition of alloc

Pointer Safety

 Is our earlier code safe?
oWe are dereferencing sum, but we don’t know it’s not NULL
o Add a precondition to ensure safety

//@requires sum != NULL;

bool sum_and_42(int[] A, int n, int* sum)
//@requires n == \length(A);
{
*sum = 0;
bool has_42 = false;
for (int i = 0; i < n; i++) {
*sum += A[i];
if (A[i] == 42) has_42 = true;

}
return has_42;
}

int main() {
int[] A = alloc_array(int, 10);
for (int i = 0; i < 10; i++) A[i] = i - 5;

int* S = alloc(int);
bool b = sum_and_42(A, 10, S);
return 0;

}

A common contract
when working with pointers

Pointer Safety

 Is our earlier code safe now?

bool sum_and_42(int[] A, int n, int* sum)
//@requires n == \length(A);
//@requires sum != NULL;
{
*sum = 0;
bool has_42 = false;
for (int i = 0; i < n; i++) {
*sum += A[i];
if (A[i] == 42) has_42 = true;

}
return has_42;
}

int main() {
int[] A = alloc_array(int, 10);
for (int i = 0; i < 10; i++) A[i] = i - 5;

int* S = alloc(int);
bool b = sum_and_42(A, 10, S);
return 0;

}

Is this safe?
YES: sum != NULL by new precondition

Is this safe?
YES: S != NULL by postcondition of alloc

More about Double Pointers

 Let’s put something other than
NULL in *w

int** w = alloc(int*);
*w = alloc(int);
**w = 13

ow has type int** and points to a cell of type int*
o *w has type int* points to a cell of type int
Why is this dereference safe?
 by postcondition of alloc(int*)

o **w is an int
Why is this dereference safe?
 by postcondition of alloc(int)

Alloc. Mem.Local Mem.

w

Contains
an int*

Type int** 13

Is an int

Summary: Pointers vs. Arrays

Pointers Arrays

Type tp* tp[]

Creation
alloc(tp)
/*@ensures \result != NULL; @*/

alloc_array(tp, size)
/*@requires size >= 0; @*/
/*@ensures \length(\result) == size; @*/

Reading and writing
*p A[i]

/@requires 0 <= i && i < \length(A); @*/

Contract-only
operations

\length(A)
/@ensures \result >= 0 @*/

Structs

Representing Images

 We can represent an image
of width w
and height h
by means of a w*h array of pixels, PX

o Pixel on row i and column j is PX[i*w + j]

o For simplicity, let’s say a pixel is an int

w

h
i

j

w * h

i*w + j

PX

Manipulating Images

 A function that returns the first quadrant of an image
 returns the pixel array of the output image
passes pointers to width and height of the output image

int[] first_quadrant(int[] PX, int w, int h, // input image
int* w_out, int* h_out) // output image

//@requires w_out != NULL && h_out != NULL;
{
*w_out = w/2;
*h_out = h/2;
int[] PX_out = alloc_array(int, (*w_out)*(*h_out));
for (int i=0; i < *w_out; i++)
for (int j=0; j < *h_out; j++)
PX_out[i * (*w_out) + j] = PX[i*w + j];

return PX_out;
}

This is to ensure the
safety of dereferencing

these pointers

Exactly what
we did earlier
Exactly what
we did earlier

What is going
on here is not
very important

Manipulating Images

 This looks clumsy
oWe like to think of an image as a single entity
Not a list of parts

 Furthermore
oCaller has to create int* cells to hold width and height of output

image
o Easy to make mistakes by swapping width and height

int[] first_quadrant(int[] PX, int w, int h, // input image
int* w_out, int* h_out) // output image

//@requires w_out != NULL && h_out != NULL;
{ …}

Yuck!

Structs

 All modern programming language provide a way to view
a collection of parts as a single entity

 In C0 (and C), this is a struct

o This defines a new type called struct image_header
o It has 3 parts: width, height and data
These are the fields of the struct

struct image_header {
int width;
int height;
int[] data; // pixels in the image

};

A new way to
create a type

Using structs

 In C0, structs can only exist in allocated memory
oWe cannot have variables of type struct image_header

 They must be accessed via pointers
oWe can only have variables of type struct image_header*

 We create an image by allocating a struct in allocated
memory

struct image_header* img = alloc(struct image_header);

struct image_header {
int width;
int height;
int[] data; // pixels in the image

};

Allocated MemoryLocal Mem.

img
width height data Field Names

The fields are initialized
with the default value

of their type

Using structs

struct image_header* img = alloc(struct image_header);
 Seriously??

 Struct types are long and tedious to write
 We almost always give them a nickname with a typedef

typedef struct image_header image;
oNow

image* img = alloc(image);

struct image_header {
int width;
int height;
int[] data; // pixels in the image

};
typedef struct image_header image;

Yuck!

Allocated MemoryLocal Mem.

img
width height data Field names

The fields are initialized
with the default value

of their type

Now, we can write
image

anywhere we had
struct image_header

Using Structs

 We manipulate a field of a struct using the field access
operator: ->

struct image_header {
int width;
int height;
int[] data; // pixels in the image

};
typedef struct image_header image;

image* img = alloc(image);
img->width = 3;
img->height = 2;
img->data = alloc_array(int, 6);

Allocated MemoryLocal Mem.

img
width height data

3 2

0 1 2 3 4 5

• follows the pointer in img
• goes to the width field
• writes 3 there

Safety

 img->width dereferences the pointer img
oWe must be sure this is safe
o img must not be NULL

 ptr->field has the precondition
//@requires ptr != NULL;

o just like *ptr

 The compiler will issue an error if the field name is wrong

Safety

 ptr->field has the precondition
//@requires pointer != NULL;

o just like *ptr

 So, there are two ways to dereference a pointer
depending on its type?
o Kind of
 img->width is shorthand for (*img).width

o In C0, we never have a reason to use the “.” operator
 We will always write img->width

C is a different story, however

Normal pointer
dereference

Field access
within a struct

When we are not
following a pointer

Returning Multiple Values

 A function that returns the first quadrant of an image
o takes an image* as input
o returns an image* as output

struct image_header {
int width;
int height;
int[] data; // pixels in the image

};
typedef struct image_header image;

image* first_quadrant(image* img)
//@requires img != NULL;
//@ensures \result != NULL;
{
image* out = alloc(image);
out->width = img->width/2;
out->height = img->height/2;
out->data = alloc_array(int, out->width * out->height);
for (int i=0; i < out->width; i++)
for (int j=0; j < out->height; j++)
out->data[i * out->width + j] = img->data[i*img->width + j];

return out;
}

What is going
on here is not
very important
But a lot more

readable!

No funny business!

Supports safety of pointer dereferences

Supports safety of caller code

Returning Multiple Values

 Should we always return multiple values using a struct?
o If the right struct is already defined, by any means!
E.g., image

o If we need to define the struct just for this purpose, don’t bother
E.g., sum_and_42
Other programming languages give a way to define things like structs on

the fly

A Collection of Parts as a Single Entity

 All modern languages provide a way to view a collection of
parts as a single entity
o structs in C0 (and C)

 This is the basis for an extraordinary form of abstraction
o Allows manipulating complex entities as a whole
 through well-defined, abstract operations
without a need to know the details

o This underlies the concept of data structures
The major topic of the rest of this course

	Pointers and Structs
	Returning Multiple Values
	Returning two Values from a Function
	Returning two Values from a Function
	Returning two Values from a Function
	Returning two Values from a Function
	Pointers
	Memory Cells and Pointers
	Memory Cells and Pointers
	Working with Pointers
	Aliasing
	Garbage Collection
	Functions on Pointers
	Returning two Values from a Function
	Returning two Values from a Function
	Returning two Values from a Function
	Summary
	NULL
	Double Pointers
	NULL
	NULL
	The Billion Dollar Mistake
	Pointer Safety
	Pointer Safety
	Pointer Safety
	More about Double Pointers
	Summary: Pointers vs. Arrays
	Structs
	Representing Images
	Manipulating Images
	Manipulating Images
	Structs
	Using structs
	Using structs
	Using Structs
	Safety
	Safety
	Returning Multiple Values
	Returning Multiple Values
	A Collection of Parts as a Single Entity

