Pointers and Structs

Returning Multiple Values

Returning two Values from a Function

® \We want to return
O the sum of all the elements in an array (an int) and
O whether 42 is in the array (a bool)

CO functions return
| at most one value

(22Dsum_and_42(int] A, int n)
[/I@requires n == \length(A);
{

iInt sum = 0; Int main
bool has 42 = false; Int(] alloc_array(int, 10);
for(inti=0;1<n;i++){ for(pt1=0;1<10; 1++) Ali] =1-5;
sum += AJi];
It (A[l] == 42) has_42 =true; : sum_and_42(A, 10);
} return O;
} }

® How can we do that?

Returning two Values from a Function

® A CO function can communicate with its caller
O by returning a value to it or
O by modifying a value in allocated memory the caller shared with it

® |dea:

O main passes a 1-element int array S to sum_and 42

O sum and 42 stores

the sumin S Local Memory ;| Allocated Memory

O it returns whether 42 main |

o :
IS In the array as a bool A : 0 . n

|

S| el |

0
sum_and 42 I
Alel !

sum goes
sum | &7 here

Returning two Values from a Function

® A CO function can communicate with its caller
O by returning a value to it or

O by modifying a value in allocated memory the caller shared with it
» |dea: caller pass a 1-element int array to store the sum and function return

a bool
I
| boolsum_and_42(int[] A, int n€int[] sum))
[[@reqiures-A—==2length(A):

Jl@requires \length(sum) == 1; >

{

0; int main() {
bool has 42 = false; int[] A = alloc_array(int, 10);
for(inti1=0;1<n;i++){ for(int1=0;1<10; i++) A[i]=1-5;

: ALl
T (A[i] == 42) has_42 = true; Cint[] S = alloc ;a%ezg%@
} bool b = sum_and_42(A, 10(S)

return has_42; return O;

} }

Returning two Values from a Function

® |dea
O caller pass a 1-element int array to store the sum and
O function return a bool

® This is clunky: invoke the whole array machinery
for a single cell in

bool sum_and_42(int[] A, int nCint[] sum)j» allocated memory!
//@requires A== \legth(A):
<f{¢@requires \length(sum) == 1; > — vuekt
0; int main() {
bool has 42 = false; int[] A = alloc_array(int, 10);
for(inti1=0;1<n;i++){ for(int1=0;1<10; i++) A[i]=1-5;
: Al
T (A[i] == 42) has_42 = true; int[] S = alloc ;a%ezg%@
! bool b =sum_and_42(A, 10(S)
return has_42; return O;
} }

Pointers

Memory Cells and Pointers

® CO provides
O a way to create individual cells in allocated memory

Creates a new cell
In allocated memory

— alloc(int)

Returns the memory X

address of the new cell Type of the values

we can put in this cell

O and pointers to manipulate them

The memory address of
the new cell Is stored In

iInt* p = alloc(int)

The type of pointers
to a cell that can
contain an int

Memory Cells and Pointers

Int* p = alloc(int)
O creates a new cell
O the returned address P |0x8C4

IS stored In p k

= > This cell can
can only® contain only contain an int
addresses —

. N '
to cells of type int AN Int pointer J \
* Well, almost. We'll revisit this. A cell of type int

Local Memory '| Allocated Memory

0x8c4

® Similar to arrays

O Specific addresses are not visible within the program
» We write arrows

O Memory cells are

initialized to default Local Memory

Allocated Memory

> (0

T~

|
|
value for their type |
|
|

Default value
of type int

Working with Pointers

® \We read and write to a memory cell through a pointer to it

*
Follow the pointer

In p and return the or write a new
value in the cell value in the cell

O This Is called dereferencing p

printint(*p); — Prints 0
*p =42: — Puts 42 in the cell pointed by p

printint(*p); ——==Prints 42

Local Memory '| Allocated Memory

> 42

Allasing

® Pointers are subject to aliasing ...

g and p point to
the same cell
int* g = p;

printint(*q); —————'Prints 42

*q —_ 7,
printint(*p); I Prints 7

Local Memory

Allocated Memory

Local Memory

L

> 42

Allocated Memory

-\

Garbage Collection

® ... and memory cell are subject to garbage collection
O when there Is no way to access them

_ Local Memory | Allocated Memory
p = alloc(int); |
_ q. ' 7
P =3 o k\:_ ’
g = alloc(int); |] 3
q| *94—-1
(i

Functions on Pointers

® A function that halves the content of an int cell
Here \VOId half@x){ O half Is passed Local Mem. | Alloc. Mem.
—/ X =*12; the value of p ain |
} » an address o I > 9
P |
iInt main() { Here > |
int* p = alloc (int); half N
*p = O: X | & :
——N\ half(p):
—|There /> assert(*p == 4),
eturn O: ’ O It modifies the same cell p points to
) | » upon returning, !
the cell pointed Local Mem. : Alloc. Mem.
by p contains 4 main .
There > p|® : > 4
.. |
® Aliasing at work! !
1N
Decommissioned

Returning two Values from a Function

Local Mem. Alloc. Mem.

® This is how we solve our |
malin

problem using pointers

!

O caller pass an int* to store the sum and

. S |
O function return a bool * / &
sum and 42 | Default int

I A |
| bool)sum_and_42(int[] A, int n,sum) 7

[/@requires n == \length(A); sum

{

0; int main() {
bool has 42 = false; int[] A = alloc_array(int, 10);
for(inti=0;1<n;i++){ for(int1=0;1<10; I++) A[i]=1-5;
= All];
T(A[l] == 42) has_42 = true; Cint* S = alloc(int))>
} bool b=sum_and_42(A, 10@
return has_42; return 0O;
} }

Returning two Values from a Function

Alloc. Mem.

0

Local Mem.
® \We can even share both main
via allocated memory AlLe
O caller pass an int* to store the sum S|e
O and a bool* to store whether 42 is b | &

In the array

>

| A
|voidsum_and_42(int[] A, int n,sum,has_42)

[/@requires n == \length(A);
{
C*sum)= O:

Chas_42)- false;

for(inti=0;1<n;i++){
<:(:>+= All];

7 (Ali] == 42XChas_42)= true;
}

}

sum

has 42

int main() {
int[] A = alloc_array(int, 10);
for (int1=0;1<10; i++) Ali] =1-5;

€

sum_ana_4Z2(A, 10

return O;

}

> 0

false |

Default bool

Returning two Values from a Function

® Real world example

SINCOS(3)

NAME

SYNOPSIS

top

Linux Programmer's Manual SINCOS(3)

sincos, sincosf, sincosl - calculate sin and cos simultaneously

top

#define GNU SOURCE /* See feature test macros(7) */
#include <math.h>

void sincos(double x, double *sin, double *cos);
void sincosf(float x, float *sin, float *cos):
void sincosl(long double x, long double *sin, long double *cos);

http://man7.org/linux/man-pages/man3/sincos.3.html

http://man7.org/linux/man-pages/man3/sincos.3.html

Summary

® Memory cells are kind of like 1-element arrays
O Live in allocated memory
O Subject to aliasing
O Garbage collected

® But they are not array!

Linux Terminal

Type error!

--> Int* p = alloc_array(int, 1); |
<stdio>:1.10-1.29:error:.type mismatch
expected: int*

found: Int[]

--> int[] A = alloc(int); |
<stdio>:1.11-1.21:error:type mismatch oRialeaz1als int[] are distinct type

expected: int][]

' |
found: int* » Not interchangeable!

NULL

Double Pointers

" |
® \\What does this do? Local Mem. | Alloc. Mem.
int** w = alloc(int*); |
W ® >
O Create a cell that can contain an int* :
Type int** Contains
an int*

® \What is the default value of type int*?
O Let’s ask coin

Linux Terminal

--> int** w = alloc(int*);
W is 0x1D75260 (int**)

> *W;
NULL (int*)

® \What is NULL?

NULL

Alloc. Mem.

‘NULL

® \What is NULL? Local Mem.
O The default value of any pointer type

O Drawn as
I I I Type int**

® A value of pointer type can be either

O an address to a cell in allocated memory, or
O NULL

® \We can check if a pointer is NULL

Linux Terminal

-->w == NULL;
true (false)

--> *w == NULL;
true (bool)

NULL

® \What is NULL good for? Local Mem. : Alloc. Mem.
Linux Terminal :
wW| e > @
--> Int** w = alloc(int*); :
w is 0x1D75260 (int**)
-=> W, We are accessing the value
NULL (int*) contained in *w, i.e.,
LS kR we are dereferencing NULL

Error: null pointer was accessed

O NULL is not the address of a memory cell
» We can dereference addresses to memory cells
» But, we are getting an error instead

® Dereferencing NULL Is a safety violation

A

This is bad!

The Billion Dollar Mistake

® Tony Hoare introduced the NULL pointer
iIn Algol W in 1965

® Part of most imperative programming languages ever since
O C, C++, Python, Javascript, PHP, ...

® One of the most error-prone programming constructs!

This led me to suggest that the null value is a
member of every type, and a null check is
required on every use of that reference variable,
and it may be perhaps a billion dollar mistake. — Trillions by now

-- Tony Hoare (InfoQ 2009 -- minute 27:40)

O Every time we dereference a pointer, we need to know it is not NULL
» Many programmers forget
» Endless source of bugs

Linux Terminal

.Ja.out

attempt to dereference null pointer
Segmentation fault (core dumped)

https://www.infoq.com/presentations/Null-References-The-Billion-Dollar-Mistake-Tony-Hoare/

Pointer Safety

Dereferencing NULL is a safety violation
® *p has the precondition

[/@requires p = NULL,;

O Every time we dereference a pointer, we need to have a reason
to believe it is not NULL

» point-to reasoning!

® alloc(ip) has the postcondition
[/{@ensures \result '= NULL;

Linux Terminal

--> Int** w = alloc(int*);
--> F\W; YES: w != NULL by postcondition of alloc

NULL (int*)

Pointer Safety

® s our earlier code safe?

O We are dereferencing sum, but we don’t know it’'s not NULL
O Add a precondition to ensure safety
//@requires sum != NULL; _—— Acommon contract

when working with pointers

bool sum_and_42(int[] A, int n, Int* sum)
[/@requires n == \length(A);

= 0; int main() {
bool has 42 = false; int[] A = alloc_array(int, 10);
for(int 1 =0;1<n; i++){ for (inti=0;1<10; I++) A[i] =1-5;
: Alil;
T (A[l] == 42) has_42 = true; int* S = alloc(int);
} bool b =sum_and _42(A, 10, S);
return has_42; return O;

} }

Pointer Safety

® |s our earlier code safe now?

C

bool sum_and_42(int[] A, int n, int* sum)

U@k ' —= th(A);
QL@VGQUIFGSW
*sum = 0;

bool has 42 = false;
for(inti=0;i1<n;i++) {
*sum += AJl];
T (A[l] == 42) has_42 = true;
}

return has_42;

Is this safe?
YES: sum != NULL by new precondition

/

iInt main() {
int[] A = alloc_array(int, 10);
for (inti1=0;1<10; I++) A[i] =1- 5;

int* S = alloc(int);
bool b =sum_and _42(A, 10, S);
return O;

}

BN

Is this safe?

YES: S = NULL by postcondition of alloc

More about Double Pointers

® | et’s put something other than Local Mem. 1| Alloc. Mem.
NULL In *w |
W| @ > Q\
|
| | ’_/_ | N
int** w = alloc(int*); Type int** 13
*w = alloc(int); P—— |sa\1m
W =13 an int*

O w has type int** and points to a cell of type int*

O *w has type int* points to a cell of type int

» Why is this dereference safe?
O by postcondition of alloc(int*)

O **w IS an Int

» Why is this dereference safe?
O by postcondition of alloc(int)

Summary: Pointers vs. Arrays

Pointers Arrays
Type tp* tp[]
alloc(tp) alloc_array(tp, size)
Creation [*@ensures \result I= NULL; @*/ | *@requires size >= 0; @*/

[*@ensures \length(\result) == size; @*/

Reading and writing

P

All]
/@requires 0 <=1 && 1 <\length(A); @*/

Contract-only
operations

\length(A)
/@ensures \result >= 0 @*/

Structs

Representing Images

® \We can represent an image
of width w
and height h

by means of a w*h array of pixels, PX

O Pixel on row i and column j is PX[i*w + |]

I*W + j

v

PX |]

W * h

O For simplicity, let’s say a pixel is an int

Manipulating Images

® A function that returns the first guadrant of an image

» returns the pixel array of the output image EW————
» passes pointers to width and height of the output image \we did earlier

int[] first_quadrant(int[] PX, int w, int h,
int* w_out, int* h_out) This is to ensure th_e
: _ safety of dereferencing
{ —

*W_out = w/2;

*h_out = h/2; What is going
int[] PX_ out = alloc_array(int, (*w_out)*(*h_out)); on here is not
for (int 1=0; 1 < *w_out; I1++) __ o O O (L yer important

for (int |=0; j < *h_out; j++)
PX_outli * (*w_out) + j] = PX[i*w +];

return PX_out;]

}

Manipulating Images

int[] first_quadrant(int[] PX, int w, int h,

Int* w_out, int* h_out)
[/@requires w_out '= NULL && h_out '= NULL;
{...}

1Yuck!

® This looks clumsy

O We like to think of an image as a single entity
» Not a list of parts

® Furthermore

O Caller has to create int* cells to hold width and height of output
Image

O Easy to make mistakes by swapping width and height

Structs

® All modern programming language provide a way to view
a collection of parts as a single entity

® In CO (and C), this Is a struct PN ——
struct imag e_header{\ create a type
iInt width;
int height;
Int[] data;

g

O This defines a new type called struct image header

O It has 3 parts: width, height and data
» These are the fields of the struct

Using structs

struct image header {
int width;
int height;
int[] data;

I3

® |In CO, structs can only exist in allocated memory
O We cannot have variables of type struct image header

® They must be accessed via pointers
O We can only have variables of type struct image_head@

® \We create an image by allocating a struct in allocated

memory

struct image _header* img = alloc(struct image_header);

Local Mem.

Allocated Memory

width height data ‘% Field Names

img | ®

\KJ

The fields are initialized
with the default value
of their type

Using structs

struct image_header {
iInt width;
int height;
int[] data;

b— —

¢ . . _
(5 tzpede struct image_header image;

struct image _header* img = alloc(struct image_header);

® Seriously??

1Yuck!

® Struct types are long and tedious to write
® \We almost always give them a nickname with a typedef

O Now
iImage* img = alloc(image);

Local Mem.

width

typedef struct image header image;
\ Now, we can write
Image

anywhere we had
struct image_header

Allocated Memory

img | ®

\kl

The fields are initialized
with the default value
of their type

D

struct image header {
int width;

Using Structs i) ot

operator:

%

typedef struct image_header image,

® We manipflate a field of a struct using the field access

image* img = alloc(image);

img->width = 3 —« follows the pointer in img
: . ’ » goes to the width field
Img->height = 2; « writes 3 there

Img->data = alloc_array(int, 6);

Local Mem. Allocated Memory
width height data
|mg >» 3 2 ®

Safety

® img->width dereferences the pointer img
O We must be sure this is safe
O img must not be NULL

® ptr->field has the precondition
[/@requires ptr '= NULL,;
O just like *ptr

® The compiler will issue an error If the field name is wrong

Safety

® ptr->field has the precondition
[/@requires pointer = NULL;
O just like *ptr

® So, there are two ways to dereference a pointer

depending on its type?
O Kind of

» Img->width is shorthand for (*img).width

S

Normal pointer
dereference

Field access |
within a struct

A When we are not

—— following a pointer

O In CO, we never have a reason to use the

a We will always write img->width
» C Is a different story, however

. operator

struct image_header {
iInt width;
int height;

Returning Multiple Values @ &
I3

typedef struct image_header image,

® A function that returns the first guadrant of an image

O takes an Image* aS inpUt No funny business!
O returns an image* as output

Image* first_guadrant(image* img)
[/@requires iImg = NULL,;
[/@ensures \result '= NULL;
{ —
iImage* out = alloc(image);
out->width = img->width/2;
out->height = img->height/2;
out->data = alloc_array(int, out->width * out->height); .
for (int 1=0; | < out->width; i++) O
for (int i=0: < out->height; j++) O
out->data[i * out->width + j] = img->data[i*img->width + |];

! Supports safety of pointer dereferences

/

Supports safety of caller code

What is going
on here is not
very important
But a lot more
readable!

return out;

}

Returning Multiple Values

® Should we always return multiple values using a struct?

O If the right struct is already defined, by any means!
» E.g., Image

O If we need to define the struct just for this purpose, don’t bother
» E.g., sum_and 42

» Other programming languages give a way to define things like structs on
the fly

A Collection of Parts as a Single Entity

® All modern languages provide a way to view a collection of
parts as a single entity

O structs in CO (and C)

® This is the basis for an extraordinary form of abstraction

O Allows manipulating complex entities as a whole
» through well-defined, abstract operations
» without a need to know the details

O This underlies the concept of data structures
» The major topic of the rest of this course

	Pointers and Structs
	Returning Multiple Values
	Returning two Values from a Function
	Returning two Values from a Function
	Returning two Values from a Function
	Returning two Values from a Function
	Pointers
	Memory Cells and Pointers
	Memory Cells and Pointers
	Working with Pointers
	Aliasing
	Garbage Collection
	Functions on Pointers
	Returning two Values from a Function
	Returning two Values from a Function
	Returning two Values from a Function
	Summary
	NULL
	Double Pointers
	NULL
	NULL
	The Billion Dollar Mistake
	Pointer Safety
	Pointer Safety
	Pointer Safety
	More about Double Pointers
	Summary: Pointers vs. Arrays
	Structs
	Representing Images
	Manipulating Images
	Manipulating Images
	Structs
	Using structs
	Using structs
	Using Structs
	Safety
	Safety
	Returning Multiple Values
	Returning Multiple Values
	A Collection of Parts as a Single Entity

