
Amortized Analysis

The n-bit Counter

Problem of the Day

Rob has a startup. Each time he gets a new user, he
increments a giant stone counter his investors (VC)
erected in downtown San Francisco ― that's a sequence
of 6 stone tablets with 0 on one side and 1 on the other.

Every time a user signs up, he increments the counter. But
the power company charges him $1 each time he turns a
tablet. He is tight on venture capital, so he needs to pass
that cost to the users. He wants to charge users as little
as possible to cover his cost (the VC promised to erect
new tablets as his user base grows).

How much should he charge each new user?

101001

Understanding the Problem

 Each time a user signs up, increment the counter
o pay the power company $1 per bit flip
o charge the user $x to cover the cost
make x as little as possible

 Cash flow:

 Implicit requirements
o Always have enough cash to pay the power bill

This is an expense

This is income

new user Rob power companyActual costSign-up fee
expenseincome

101001

Understanding the Problem

o cost = number of bits flipped

o Sign-up expense varies

many as low as $1

maximum gets higher and higher
 and further apart

Counter User # Cost

0 0 0 0 0 0

1 1
0 0 0 0 0 1

2 2
0 0 0 0 1 0

3 1
0 0 0 0 1 1

4 3
0 0 0 1 0 0

5 1
0 0 0 1 0 1

6 2
0 0 0 1 1 0

7 1
0 0 0 1 1 1

8 4
0 0 1 0 0 0

 What is the cost of signing up the first few users?

101001

Solution #1

 Charge each user the actual cost

oRob can’t charge different users different costs

 Implicit requirements
o Always have enough cash to pay the power bill
oCharge every user the same amount

101001


He’s not running an airline!

New

Solution #2

 Charge each user the maximum possible cost
oHow much would that be?
6 bits, so $6
 in general, for an n bit counter, cost is $n

o This is too much
Rob would be making a big profit

 Implicit requirements
o Always have enough cash to pay the power bill
oCharge every user the same amount
oDon’t bother making a profit

101001

Nobody would sign up



New
This is a startup after all

Understanding the Problem

o total_cost = sum of all cost up
to current sign-up

oObservation:
 total_cost < 2 * user#
 at most,

total_cost = 2 * user# - 1
for most expensive increments

 Let’s write down Rob’s total cost over time

101001

Counter User # Cost Total
cost

0 0 0 0 0 0

1 1 1
0 0 0 0 0 1

2 2 3
0 0 0 0 1 0

3 1 4
0 0 0 0 1 1

4 3 7
0 0 0 1 0 0

5 1 8
0 0 0 1 0 1

6 2 10
0 0 0 1 1 0

7 1 11
0 0 0 1 1 1

8 4 15
0 0 1 0 0 0

Idea:
charge users $2!

Solution #3

 Charge each user $2
o If the actual cost is less, put the difference in a savings account
o If the actual cost is more, pay the difference from these savings

oDoes this work?
Does he always have enough cash to pay the power bill?
Are the savings growing into unreasonable profit?

 Implicit requirements
o Always have enough cash to pay the power bill
oCharge every user the same amount
oDon’t bother making a profit

101001

This is reasonable for users

Understanding the Problem

o total_income
= 2 * user#

o savings =
total_income –
total_cost

o enough to pay bills
 savings + $2 ≥ next cost
no big profits

o no need to borrow
 savings ≥ 0

 Let’s write down the total income and savings over time

101001

Counter User # Cost Total
cost

Total
income

Savings

0 0 0 0 0 0

1 1 1 2 1
0 0 0 0 0 1

2 2 3 4 1
0 0 0 0 1 0

3 1 4 6 2
0 0 0 0 1 1

4 3 7 8 1
0 0 0 1 0 0

5 1 8 10 2
0 0 0 1 0 1

6 2 10 12 2
0 0 0 1 1 0

7 1 11 14 3
0 0 0 1 1 1

8 4 15 16 1
0 0 1 0 0 0

$2 per
user

Problem Solved?

 Charging users $2 seems to work …
 it works for the first 8 users!

 … but how can we be sure?
o at some point,
Rob may not have enough cash to cover the costs
he may run a big profit

o or both at different times

 Let’s turn this into a computer science problem

101001

Problem Solved?

of increments

C
os

t

Total income
($2 per increment)

Total cost

Never bigger than
total income …

… but what happens
for other sign-ups?

Analyzing the n-bit Counter

The n-bit Counter Revisited

 View the counter as a data structure
o n bits

 and a user sign-up as an operation
o The number of bit flips is the cost of performing the operation
oWorst-case cost is O(n)
 flip all n bits

 Then, “enough to pay bills” and “savings ≥ 0” are like
data structure invariants …
o… but about cost
oWait!
what are the savings in the data structure?
what does the $2 fee represent?

1 0 0 1 0 1

So far, data structure invariants have been about the
representation of the data structure, never about cost

What are the Savings?

o Visualize this by placing a token

on top of each 1-bit in the counter

o A token represents a unit of cost
 = $1 = cost of one bit flip

we earn tokens by charging for an increment
 2 tokens per call to the operation
 no matter how many bits actually get flipped

we spend tokens performing the increment
 1 token per bit actual flip
 variable number of bit flips per increment

 The savings are equal to the number of bits set to 1
Counter User # Savings

0 0 0 0 0 0

1 1
0 0 0 0 0 1

2 1
0 0 0 0 1 0

3 2
0 0 0 0 1 1

4 1
0 0 0 1 0 0

5 2
0 0 0 1 0 1

6 2
0 0 0 1 1 0

7 3
0 0 0 1 1 1

8 1
0 0 1 0 0 0

1 0 0 1 0 1

O(n) in worst case

The Token Invariant

 If we
o earn 2 tokens per increment and
o spend 1 token for each bit flipped to carry it out,

 we claim that
o the tokens in saving are always equal to the number of 1-bits

 This is our token invariant
tokens = # 1-bits

o if valid, then “saving ≥ 0” holds
because there can’t be a negative number of 1-bits

1 0 0 1 0 1

Well, this is a candidate invariant:
we still need to show it is valid

Proving the Token Invariant

 To prove it is valid, we need to show that it is preserved
by the operations
o if the invariant holds before the operation, it also holds after

 Preservation:
o if # tokens == # 1-bits before incrementing the counter,

then # tokens == # 1-bits also after
o if true, then “enough savings to pay power bill” holds
because # 1-bits after can’t be negative

Just like loop invariants
while (i < n)

//@loop_invariant 0 <= i && i < \length(A);

In fact, just like data structure invariants!
void enq(queue* Q, string x)
//@requires is_queue(Q);
//@ensures is_queue(Q);

1 0 0 1 0 1

Proving the Token Invariant

 To prove it is valid, we need to show that it is preserved
by the operations
o if the invariant holds before the operation, it also holds after

 Should we also prove that it is true initially?
 kind of …

o… we are missing an operation:
 creating a new counter initialized to 0

oDoes the token invariant hold for a new counter?
tokens == # 1-bits

no users yet, so no tokens
no 1-bits

 This is a special case of preservation (no “before”)

1 0 0 1 0 1

0 0 0 0 0 0



Proving the Token Invariant

 If # tokens == # 1-bits before incrementing the counter,
then # tokens == # 1-bits also after
o i.e.,
# 1-bits before + 2 - # bit flips = # 1-bits after

 Let’s check it on an example

1 0 0 1 0 1

1 0 0 1 1 1

1 0 1 0 0 0

tokens from user

Earns 2 tokens
from user

cost of operation

Pays 4 tokens
for flipping bits

Savings before

Savings after

tokens in savings# tokens in savings

there is a token on
top of every 1-bit

The token invariant
is preserved in
this example

Proving the Token Invariant

 If # tokens == # 1-bits before incrementing the counter,
then # tokens == # 1-bits also after
o i.e.,
# 1-bits before + 2 - # bit flips = # 1-bits after

 How are the tokens used?

1 0 0 1 0 1

1 0 0 1 1 1

1 0 1 0 0 0

o each 1-bit that is flipped
paid by associated token in savings

o 0-bit that is flipped
paid by 1 token from user

o token for the new 1-bit
paid by 1 token from user

These are all the
1-bits to the right of
the rightmost 0-bit

Proving the Token Invariant

 If # tokens == # 1-bits before incrementing the counter,
then # tokens == # 1-bits also after
o i.e.,
# 1-bits before + 2 - # bit flips = # 1-bits after

 How are the tokens used?
o tokens associated to bits:
used to flip bit from 1 to 0

o 2 tokens from user
1 token to flip rightmost 0-bit to 1
1 token to place on top of new

rightmost 1-bit

1 0 0 1 0 1

1 0 0 1 1 1

1 0 1 0 0 0

Proving the Token Invariant

 # 1-bits before + 2 - # bit flips = # 1-bits after

 General situation

1 0 0 1 0 1

b … b 0 1 … 1

b … b 1 0 … 0

Earns 2 tokens
from user

Pays r+1 tokens
for flipping bits 

These bits
get flipped

Rightmost 0-bits

These bits
don’t change

r bits

o rightmost 1-bits are flipped
paid by associated token in savings

o rightmost 0-bit is flipped
paid by 1 token from user

o token for the new rightmost 1-bit
paid by 1 token from user

o other bits don’t change

Solution #3

 Charge each user $2
o If the actual cost is less, put the difference in a savings account
o If the actual cost is more, pay the difference from these savings

oDoes this work?
YES!

 Implicit requirements
o Always have enough cash to pay the power bill
oCharge every user the same amount
oDon’t bother making a profit

101001

This is reasonable for users



What does the $2 fee Represent?

 We pretend that each increment costs 2 tokens
o even though it may cost as much as n, or as little as 1

 This is the amortized cost of an increment
o not the actual cost of an increment (which varies)
o but enough to cover the actual cost over a sequence of operations
 inexpensive increments pay for expensive ones
prepay future cost

o note that 2 is in O(1)

 Worst case cost of increment: O(n)
 Amortized cost of increment: O(1)

1 0 0 1 0 1

an increment can cost
as much as O(n) …

… but it is as if each increment
in the sequence cost O(1)

Amortized Complexity Analysis

Sequences of Operations

 We have a data structure on which
we perform a sequence of k operations

 Normal complexity analysis tells us that the
cost of the sequence is bounded by k times
the worst-case complexity of the operations

 The overall actual cost of the sequence is
much less
o actual_cost = Σk

i=0 cost_of_operation_i

 Define the amortized cost as the overall
actual cost divided by the length of the sequence
o amortized_cost = actual_cost / k
 rounded up

n-bit counter

k increments

k times O(n):
that’s O(kn)

O(k) divided by
k: that’s O(1)

O(k) for the
whole sequence

Our
example

We did this
in the table

Amortized Cost

The overall actual cost divided by the length of the sequence

 This is the average of the actual cost of each operation over
the sequence
o amortized_cost = (Σk

i=0 cost_of_operation_i) / k
 rounded up

 As if every operation in the sequence cost the same amount
o This amount is the amortized cost

 Just looking at the worst-case complexity is too pessimistic
o it tells us about the cost of an operation in isolation
o but here the operation is part of a sequence

each one operation may be expensive,
but on average they are pretty cheap

Amortized Cost

The overall actual cost divided by the length of the sequence

o amortized_cost = (Σk
i=0 cost_of_operation_i) / k

 rounded up

Actual cost of operation Amortized cost

A New Notion of “Average”

 Recall Quicksort
oWorst-case complexity: O(n2)
when we were really unlucky and systematically picked bad pivots

oAverage-case complexity: O(n log n)
what we expected for an average array
 very unlikely that all pivots are bad

 What were we averaging over?
o The likelihood of a series of bad pivots in all possible arrays
a probability distribution

 Average-case complexity has to do with chance
o There is a very low probability that the actual cost will be O(n2)

on any given input
but it may happen
 the actual cost depends on what array we are handed

A New Notion of “Average”

 Average-case complexity: average over input distribution
o The actual cost has to do with chance

 Amortized complexity: average over a sequence of
operations
oWe know the exact cost of every operation
 so we know the exact cost of the sequence overall
 this is an exact calculation
 no chance involved

 Difference
o average over time
vs.
o average over chance

Basically an
average over time

Amortized complexity

Average complexity

Amortization in Practice (I)

 A baker buys a $100 sack of flour every 100 loaves of
bread
o 1st loaf costs $100
o 2nd, 3rd, …, 100th costs nothing

 The baker charges $1 for each loaf
o average cost over all 100 loafs

Here, both worst case and amortized cost are O(1)
o not as dramatic as O(n) vs. O(1)

Actual cost to
the baker

The baker
charges you an
amortized cost

$100 $1

Amortization in Practice (II)

 Your smartphone use varies over time
o some days you barely go online
o other days you binge-watch movies for hours on end

 Your provider charges you a fixed monthly cost
o average cost over time and over all customers

(+ profit)

Actual cost to
your provider

Your provider
charges you an
amortized cost

When to Use Amortized Analysis?

 We have a sequence of k operations on a data structure
o the sequence starts from a well-defined state
o each operation changes the data structure

 We expect the actual cost of the whole sequence to be
much less than k times the worst-case complexity of the
operations
o a few operations are expensive
omany are cheap
The inexpensive operations pay for the expensive operations

We prepay for future costs

How to do Amortized Analysis?

 Invent a notion of token
o represents a unit of cost

 Determine how many tokens to charge for each operation
 this is the candidate amortized cost

o (see next)

 Specify the token invariant
o for any instance of the data structure, how many tokens need to

be saved

 Prove that every operation preserves the token invariant
o if the invariant holds before, it also holds after
 saved tokens before + amortized cost – actual cost = saved tokens after

what we pretend the
operation costs

This is like
point-to

reasoning

This is like
point-to

reasoning

How to Determine the Amortized Cost?

How many tokens to charge?

1. Draw a short sequence of operations
 make it long enough so that a pattern emerges

2. Write the cost of each operation
3. Flag the most expensive
4. For each operation, compute the total cost

up to it
5. Divide the total cost of the most expensive

operations by the operation number in the
sequence

6. Round up — that’s the candidate amortized
cost

candidate

Counter User
#

Cost Total
cost

Div

000000

1 1 1
000001

2 2 3 1.5
000010

3 1 4
000011

4 3 7 1.75
000100

5 1 8
000101

6 2 10
000110

7 1 11
000111

8 4 15 1.875
001000

2

1
2 4 5

3

3

3

6

This is called the accounting method This is like operational reasoning:
forming a conjecture that we then

prove using point-to reasoning

Unbounded Arrays

Another Problem

 We want to store all the words in a text file into an array-like
data structure so that we can access them fast
owe don’t know how many words there are ahead of time

 Use an array?
o access is O(1)
o but we don’t know how big to make it!
 too small and we run out of space
 too big and we waste lots of space

 Use a linked list?
owe can make it the exact right size!
o but access is O(n)

where n is the number of words in the file

Lorem ipsum dolor sit amet,
consectetur adipiscing elit, sed
do eiusmod tempor incididunt

ut labore et dolore magna
aliqua. Ut enim ad minim

veniam, quis nostrud
exercitation ullamco laboris

nisi ut aliquip ex ea commodo
consequat. Duis aute irure





Another Problem

 We want to store all the words in a text file into an array-like
data structure so that we can access them fast
owe don’t know how many words there are ahead of time

 We want an unbounded array
a data structure that combines the best properties of arrays and linked lists

o access is about O(1)
o and size is about right

 Same operations as regular arrays, plus
o a way to add a new element at the end
o a way to remove the end element

That’s what amortized
cost is all about!

Lorem ipsum dolor sit amet,
consectetur adipiscing elit, sed
do eiusmod tempor incididunt

ut labore et dolore magna
aliqua. Ut enim ad minim

veniam, quis nostrud
exercitation ullamco laboris

nisi ut aliquip ex ea commodo
consequat. Duis aute irure

Never too small, and
not extravagantly big

The Unbounded Array Interface

// typedef ______* uba_t;

int uba_len(uba_t A) // O(1)
/*@requires A != NULL; @*/
/*@ensures \result >= 0; @*/ ;

uba_t uba_new(int size) // O(1)
/*@requires 0 <= size ; @*/
/*@ensures \result != NULL; @*/
/*@ensures uba_len(\result) == size; @*/ ;

string uba_get(uba_t A, int i) // O(1)
/*@requires A != NULL; @*/
/*@ensures 0 <= i && i < uba_len(A); @*/ ;

string uba_set(uba_t A, int i, string x) // O(1)
/*@requires A != NULL; @*/
/*@ensures 0 <= i && i < uba_len(A); @*/ ;

void uba_add(uba_t A, string x) // O(1) amt
/*@requires A != NULL; @*/ ;

string uba_rem(uba_t A) // O(1) amt
/*@requires A != NULL; @*/
/*@requires 0 < uba_len(A); @*/ ;

Unbounded Array Interface

This is exactly the
self-sorting array interface

with “ssa” renamed to “uba”

Add x as the last element of A
• A grows by 1 element

Remove and return the last
element of A
• A shrinks by 1 element

Constant amortized
complexity

(worst-case could
be a lot higher)

Doesn’t keep elements
sorted this time

Towards an Implementation

 Recall the SSA concrete type

 Can we reuse it for unbounded arrays?
o Let’s add “c” to it

// Implementation-side type
struct ssa_header { // Concrete type
int length; // 0 <= length
string[] data; // \length(data) == length

};

Client view

These are
representation invariants

"a" "b"
length 2

data "a" "b"

A

A

ub
a_

ad
d(

A,
 "c

")

Implementation
view

Towards an Implementation

 Let’s add “c” to it

oCopying the old elements to the new array is expensive
O(n) for an n-element array

 Next, let’s remove the last element

"a" "b" "c"

length 3

data "a" "b"

A

A

"a" "b" "c"

ub
a_

ad
d(

A
, "

c"
)

Create a new 3-element array,
copy “a” and “b” over,

write “c”

ub
a_

re
m

(A
)

Towards an Implementation

 Next, let’s remove the last element

oCopying the remaining elements to the new array is expensive
again, O(n)

 Can we do better?

"a" "b"

length 2

data

"a" "b"

A

A

"a" "b" "c"

ub
a_

re
m

(A
)

Create a new 2-element array,
copy “a” and “b” over,

return “c”

Towards an Implementation

 Can we do better?
oMaybe leave the array alone and just change the length!

oWe did not do any copying, just updated the length
O(1) for an n-element array

 Let’s continue by adding “d”

length 2

data

A

"a" "b"

No need to create a new array!

The last position is unused:
we can recycle it

Sneaky!

ub
a_

re
m

(A
)

ub
a_

ad
d(

A,
 "d

")

"a" "b"A

Towards an Implementation

 Let’s continue by adding “d”

o All we did is one write!
O(1)

 But is it safe?
oWe have no way to know the true length of the array!

 it used to be that A->length == \length(A->data)
when executing

A->data[2] = “d”
we don’t know if we are writing out of bounds
 now, all we know is that A->length <= \length(A->data)

length 3

data

A

"a" "b" “d"

No need to create a new array:
just use the unused position!

STOP

ub
a_

ad
d(

A
, "

d"
)

"a" "b" "d"A

Towards an Implementation

 Fix this by splitting length into two fields
o size is the size of the unbounded array reported to the user
o limit is the true length of the underlying array

// Implementation-side type
struct uba_header { // Concrete type
int size; // 0 <= size && size < limit
int limit; // 0 < limit
string[] data; // \length(data) == limit

};

Client view Implementation
view

"a" "b"
size 2

limit 4

data "a" "b"

A

A

It will be convenient
to have size < limit

rather than size <= limit

These are
representation invariants

Towards an Implementation

 Let’s do it all over again: we first add “c”

oNo need to copy old array elements
write new element in the first unused space
update size

oO(1) for an n-element array
 very cheap this time

 Next, let’s remove the last element

Write “c” in the first
unused spacesize 3

limit 4

data "a" "b" "c"

A

"a" "b" "c"A
ub

a_
ad

d(
A

, "
c"

)

ub
a_

re
m

(A
)

Towards an Implementation

 Next, let’s remove the last element

o Simply decrement size and return element
oO(1)

 Let’s continue by adding “d”

size 2

limit 4

data "a" "b"

A

“c” is still here,
but we don’t care

ub
a_

re
m

(A
)

ub
a_

ad
d(

A,
 "d

")

"a" "b"A

Towards an Implementation

 Let’s continue by adding “d”

o As before, just update size
oO(1)

 This is where we got stuck earlier
o Let’s carry on and add “e”

size 3

limit 4

data "a" "b" "d"

A

ub
a_

ad
d(

A
, "

d"
)

"a" "b" "d"A

Write “d” where
“c” used to be

ub
a_

ad
d(

A,
 "e

")

Towards an Implementation

 Let’s carry on and add “e”

 We need to resize the array to accommodate “e”
owhile satisfying the representation invariants

 How big should the new array be?

We can’t do that!
This violates the invariant that

size < limit

"a" "b" "d" "e"A

size 4

limit 4

data "a" "b" "d" "e"

A

ub
a_

ad
d(

A
, "

e"
)

Resizing the Array

 How big should the new array be?
oOne longer: just enough to accommodate “e”

oO(n) for an n-element array

 The next uba_add will also be O(n)
o and the next after that, and the one after, and …

size 4

limit 5

data

"a" "b" "d" "e"

A

"a" "b" "d"

"a" "b" "d" "e"A
ub

a_
ad

d(
A

, "
e"

)

We need to copy the
elements of the old

array into the new array

Resizing the Array

 How big should the new array be?
o one longer: just enough to accommodate “e”
oO(n) for an n-element array, but the next add will also be O(n), …

 A sequence of n uba_add starting from a limit-1 array costs
1 + 2 + 3 + … + (n-1) + n = n(n+1)/2

That’s O(n2)
o The amortized cost of each operation is O(n), like the worst-case

 Can we do better?
o If there is space in the array, uba_add costs just O(1)
o Idea: make the new array bigger than necessary

"a" "b" "d" "e"A

Resizing the Array

 How big should the new array be?
o Two longer: enough to accommodate “e” and a next element

oO(n) for an n-element array

 The next add will be O(1) but the one after that is O(n) again
o The cost of a sequence of n uba_add is still O(n2)
o The amortized cost stays at O(n)

 Same if we grow the array by any
fixed amount c

size 4

limit 6

data

"a" "b" "d" "e"

A

"a" "b" "d"

"a" "b" "d" "e"A
ub

a_
ad

d(
A

, "
e"

)

1 + 1 + 3 + 1 + 5 + 1 + … + 1 + n
= 2 + 4 + 6 + … (n+1)
= 2(1 + 2 + 3 + … (n+1)/2)
≈ n2/4

Resizing the Array

 How big should the new array be?
oDouble the length!

oO(n) for an n-element array

 The next n uba_add will be O(1)
oWe get good amortized cost when
 the expensive operations are further and further apart
most operations are cheap

oDoes doubling the size of the array give us O(1) amortized cost?

size 4

limit 8

data

"a" "b" "d" "e"

A

"a" "b" "d"

"a" "b" "d" "e"A
ub

a_
ad

d(
A

, "
e"

)

Analyzing Unbounded Arrays

Amortized Cost of uba_add

 Conjecture: doubling the size of the array on resize yields
O(1) amortized complexity

 Let’s follow our methodology
 Invent a notion of token
o represents a unit of cost

 Determine how many tokens to charge
o the candidate amortized cost

 Specify the token invariant
o for any instance of the data structure,

how many tokens need to be saved

 Prove that the operation preserves it
o if the invariant holds before, it also holds after
 saved tokens before + amortized cost – actual cost =

saved tokens after

1. Draw a short sequence of
operations

2. Write the cost of each operation
3. Flag the most expensive
4. For each operation, compute the

total cost up to it
5. Divide the total cost of the most

expensive operations by the
operation number in the sequence

6. Round up — that’s the candidate
amortized cost

Amortized Cost of uba_add

 Invent a notion of token
o represents a unit of cost

 For us, the unit of cost will be an array write
o 1 array write costs 1 token
o all other instructions are cost-free
we could also assign a cost to them

but let’s keep things simple

Amortized Cost of uba_add

 Determine how many tokens to charge
o that’s the candidate amortized cost

 When adding an element
owe first write it in the old array, and then
o if full, copy everything to the new array

o This costs 5 tokens
write “e” in the old array
 copy “a”, “b”, “d”, “e” to the new array

1. Draw a short sequence of
operations

2. Write the cost of each operation
3. Flag the most expensive
4. For each operation, compute the

total cost up to it
5. Divide the total cost of the most

expensive operations by the
operation number in the sequence

6. Round up — that’s the candidate
amortized costsize 4

limit 8

data

"a" "b" "d" "e"

A

"a" "b" "d" "e"

a bit silly, but it makes
the math simpler

ub
a_

ad
d(

A,
 "e

")

“a” “b” “c” “d” “e” “f” “g” “h”

“a” “b” “c” “d” “e” “f” “g” “h” “I”

“a” “b” “c” “d” “e” “f” “g” “h”

“a” “b” “c” “d” “e” “f” “g”

“a” “b” “c” “d” “e” “f”

“a” “b” “c” “d” “e”

“a” “b” “c” “d”

“a” “b” “c” “d”

“a” “b” “c”

“a” “b”

“a” “b”

size limit data

1 2

3 3 3 1

4 1 2

3 9 5 3

10 1 4

11 1 5

12 1 6

3 21 9 7

22 1 8

“a”

size limit data

2 4

size limit data

3 4

size limit data

4 8

size limit data

5 8

size limit data

6 8

size limit data

7 8

size limit data

9 16

size limit data

7 8

2 1

3

3

3

4

5

36

Amortized Cost of uba_add
1. Draw a short sequence of operations
2. Write the cost of each operation
3. Flag the most expensive
4. For each operation, compute the total

cost up to it
5. Divide the total cost of the most

expensive operations by the
operation number in the sequence

6. Round up — that’s the candidate
amortized cost

Unit of cost:
1 array write

Candidate
amortized

cost

Amortized Cost of uba_add

It looks like we need to charge 3 tokens per uba_add

 Specify the token invariant
o for any instance of the data structure, how many tokens need to

be saved

 How are the 3 tokens charged for an uba_add used?
oWe always write the added element to the old array
1 token used to write the new element

o The remaining 2 tokens are saved
where do they go?

that’s our candidate
amortized cost

Amortized Cost of uba_add

 How are the 3 tokens charged for an uba_add used?
o 1 token used to write the new element
oWhere do the remaining 2 tokens go?

 Assume
owe have just resized the array and have no tokens left

“a” “b” “c” “d”

“a” “b” “c” “d”

“a” “b” “c”

“a” “b”

size limit data

2 4

size limit data

3 4

size limit data

4 8

We spent all saved tokens resizing

We spend 4 tokens
copying the elements

ad
d

 "c
"

ad
d

 "d
"

Each token is associated
with an element in the old array

Amortized Cost of uba_add

 How are the 3 tokens charged for an uba_add used?
o 1 token used to write the new element
o Each of the remaining 2 tokens is associated with an element in

the old array
1 token to copy the element we just wrote
 always in the 2nd half of the array

1 token to copy the matching element in the first half of the array
 element that was copied on the last resize

“a” “b” “c” “d”

“a” “b” “c” “d”

“a” “b” “c”

“a” “b”

size limit data

2 4

size limit data

3 4

size limit data

4 8

ad
d

 "c
"

ad
d

 "d
"

1st half 2nd half
1st half: elements inherited from last resize
2nd half: elements added after last resize

Amortized Cost of uba_add

 The token invariant
o every element in the 2nd half of the array has a token
o and the corresponding element in the 1st half of the

array has a token

 Alternative formulation:
o an array with limit 2k and size k+r holds 2r tokens (for 0 ≤ r < k)
# tokens == 2r

… … … …
size limit data

k+r 2k

1st half 2nd half

k k

r r

both assume a resize has happened previously

Amortized Cost of uba_add

 Prove that the operation preserves the token invariant
o if the invariant holds before, it also holds after
 saved tokens before + amortized cost – actual cost = saved tokens after

 We need to distinguish two cases
1. Adding the element does not trigger a resize
2. Adding the element does trigger a resize
… and we will need to see what happens before the first
resize

Amortized Cost of uba_add

saved tokens before + amortized cost – actual cost = saved tokens after

1. Adding the element does not trigger a resize
We receive 3 tokens
 we spend 1 to write the new element
 we put 1 on top of the new element
 we put 1 on top of the matching element in the 1st half of the array

Alternatively,
 # tokens after = # tokens before + 3 – 1 = 2r + 2 = 2(r+1) = 2r’

… … … …
size limit data

k+r 2k

k k

r r

… … … …
size limit data

k+r+1 2k

k’ = k k ’ = k

r’ = r+1 r’ = r+1

ub
a_

ad
d

Amortized Cost of uba_add

saved tokens before + amortized cost – actual cost = saved tokens after

2. Adding the element does trigger a resize
We receive 3 tokens
 we spend 1 to write the new element
 we put 1 on top of the new element
 we put 1 on top of the matching element in the 1st half of the array

We spend all tokens associated with array elements

… …
size limit data

2k-1 2k

k k
r = k-1 r = k-1

… … …

size limit data

2k 4k

k’ = 2k k ’ = 2k

r’ = 0 r’ = 0

ub
a_

ad
d

… …

Amortized Cost of uba_add

saved tokens before + amortized cost – actual cost = saved tokens after

2. Adding the element does trigger a resize

Alternatively,
 # tokens after = # tokens before + 3 – 1 – (# tokens before + 2) = 2r + 2 – 2(r+2) = 0 = 2r’

… …
size limit data

2k-1 2k

k k
r = k-1 r = k-1

… … …

size limit data

2k 4k

k’ = 2k k ’ = 2k

r’ = 0 r’ = 0

ub
a_

ad
d

… …

Amortized Cost of uba_add

 What happens before the first resize?
o there is no 1st half of the array where to put matching tokens
o put it in an extra savings account
 that will not be used when resizing
update the token invariant to: # tokens ≥ 2r

o It doesn’t matter if we have extra savings
we are charging 3 tokens for uba_add
amortized cost is still O(1)

… …
size limit data

r k

k

r

… …
size limit data

r+1 k

k’ = k

r’ = r+1

ub
a_

ad
d

Amortized Cost of uba_add

 We followed our methodology

 and found that
owe can charge 3 tokens for uba_add
o the amortized complexity of uba_add is O(1)
o although its worst-case complexity is O(n)

 Invent a notion of token
o represents a unit of cost

 Determine how many tokens to charge
o the candidate amortized cost

 Specify the token invariant
o for any instance of the data structure,

how many tokens need to be saved

 Prove that the operation preserves it
o if the invariant holds before, it also holds after
 saved tokens before + amortized cost – actual cost =

saved tokens after

1. Draw a short sequence of
operations

2. Write the cost of each operation
3. Flag the most expensive
4. For each operation, compute the

total cost up to it
5. Divide the total cost of the most

expensive operations by the
operation number in the sequence

6. Round up — that’s the candidate
amortized cost

where n is the number
of elements in the array

What about the Other Operations?

 uba_len, uba_new and uba_get
don’t write to the array
o they cost 0 tokens

 uba_set does exactly 1 write to
the array
o it costs 1 token

 uba_rem is … interesting
o left as exercise!

Worst-case complexity is O(1)

By charging this number of tokens,
they trivially preserve the token
invariant
o our analysis of uba_add remains valid

even for sequences of operations that
make use of them

It turns out that Its
amortized complexity is also O(1)

Implementing Unbounded Arrays

Let’s implement them!

 Things we need to do

oDefine the concrete type for uba_t

oDefine its representation invariants

owrite code for every interface function
make sure it’s safe and correct

// typedef ______* uba_t;

int uba_len(uba_t A) // O(1)
/*@requires A != NULL; @*/
/*@ensures \result >= 0; @*/ ;

uba_t uba_new(int size) // O(1)
/*@requires 0 <= size ; @*/
/*@ensures \result != NULL; @*/
/*@ensures uba_len(\result) == size; @*/ ;

string uba_get(uba_t A, int i) // O(1)
/*@requires A != NULL; @*/
/*@ensures 0 <= i && i < uba_len(A); @*/ ;

string uba_set(uba_t A, int i, string x) // O(1)
/*@requires A != NULL; @*/
/*@ensures 0 <= i && i < uba_len(A); @*/ ;

void uba_add(uba_t A, string x) // O(1) amt
/*@requires A != NULL; @*/ ;

string uba_rem(uba_t A) // O(1) amt
/*@requires A != NULL; @*/
/*@requires 0 < uba_len(A); @*/ ;

Unbounded Array Interface

Left as an exercise

Concrete Type

 We did this earlier!
// Implementation-side type
struct uba_header { // Concrete type
int size; // 0 <= size && size < limit
int limit; // 0 < limit
string[] data; // \length(data) == limit

};
typedef struct uba_header uba; // Internal name

// … rest of implementation …

// Client-side type (abstract)
typedef uba* uba_t;

Client view Implementation
view

"a" "b"
size 2

limit 4

data "a" "b"

A

A

Representation Invariants

 Internally, unbounded arrays are values of type uba*
o non-NULL
o satisfies the requirements in the type

bool is_array_expected_length(string[] A, int length) {
//@assert \length(A) == length;
return true;

}

bool is_uba(uba* A) {
return A != NULL

&& is_array_expected_length(A->data, A->limit)
&& 0 <= A->size
&& A->size < A->limit;

}

struct uba_header {
int size; // 0 <= size && size < limit
int limit; // 0 < limit
string[] data; // \length(data) == limit

};
typedef struct uba_header uba;

size 2

limit 4

data "a" "b"

A

Our trick to check
that the length is Ok

Basic Array Operations

 The code is as expected

string uba_set(uba* A, int i, string x)
//@requires is_uba(A);
//@requires 0 <= i && i < uba_len(A);
//@ensures is_uba(A);
{

A->data[i] = x;
}

struct uba_header {
int size;
int limit;
string[] data;

};
typedef struct uba_header uba;

uba* uba_new(int size)
//@requires 0 <= size;
//@ensures is_stack(\result);
//@ensures uba_len(\result) == size;
{
uba* A = alloc(uba);
int limit = size == 0 ? 1 : size*2;
A->data = alloc_array(string, limit);
A->size = size;
A->limit = limit;
return A;

}

int uba_len(uba* A)
//@requires is_uba(A);
//@ensures 0 <= \result && \result < \length(A->data);
{

return A->size;
}

string uba_get(uba* A, int i)
//@requires is_uba(A);
//@requires 0 <= i && i < uba_len(A);
{

return A->data[i];
}

size 2

limit 4

data "a" "b"

A

• if size == 0, then limit = 1
• otherwise limit = size*2

This ensures that
size < limit

(and leaves room to grow)

We are not
considering

overflow

Adding an Element

 We write the new element,
 increment size,
 if array is full, we resize it
o but only if there can’t be overflow

void uba_add(uba* A, string x)
//@requires is_uba(A);
//@ensures is_uba(A);
{
A->data[A->size] = x;
(A->size)++;

if (A->size < A->limit) return;
assert(A->limit <= int_max() / 2);
uba_resize(A, A->limit * 2);

}

struct uba_header {
int size;
int limit;
string[] data;

};
typedef struct uba_header uba;

Fail if new limit would overflow

Resize A with the new limit
double the old limit

size 2

limit 4

data "a" "b"

A

Resizing the Array

 Create an array with the new limit,
 copy the elements over
 update the fields of the header

void uba_resize(uba* A, int new_limit)
//@requires A != NULL;
//@requires 0 <= A->size && A->size < new_limit;
//@requires \length(A->data) == A->limit;
//@ensures is_uba(A);
{
string[] B = alloc_array(string, new_limit);

for (int i = 0; i < A->size; i++)
//@loop_invariant 0 <= i && i <= A->size;
{
B[i] = A->data[i];

}

A->limit = new_limit;
A->data = B;

};

struct uba_header {
int size;
int limit;
string[] data;

};
typedef struct uba_header uba;

//@requires is_uba(A);
would be incorrect:

we may have size==limit

uba_resize may be passed an invalid UBA:
one that violates the representation invariant

Part of its job is to restore
the representation invariant

Unbounded Arrays in the Wild

Python “Lists”

 The Python programming language does not have arrays
 It has “lists” that can be indexed, extended and shrunk
o nothing to do with linked list

 Python lists work just like unbounded arrays
o append is what we called uba_add

data = ['A', 'B', 'C']
data.append('D')
data[2]

data = []
for i in range(100000):
data.append('A')

data[99888]

Create a 3-element list with ‘A’, ‘B’, and ‘C’

Extend it with ‘D’

Get the element at index 2 (that’s ‘C’)

Set data to the empty list

Extend it with a bunch of ‘A’

Access one of them

How are Python Lists Implemented?

 Source code available at
https://github.com/python/cpython/blob/master/Objects/listobject.c
o It is written in C

 Let’s look at the code for append

If all Ok, call app1

Otherwise,
raise an error

https://github.com/python/cpython/blob/master/Objects/listobject.c

How are Python Lists Implemented?

 Let’s look at the code of app1

This code writes the new
element after any resizing

Calls list_resize to
resize array if needed

How are Python Lists Implemented?

 Let’s look at the code of list_resize

… unimportant code

== newsize / 8

new_allocated
= 1.125 * newsize

+ change

doesn’t quite
double the

size, but grows
as a multiple of

newsizeExercise: check that the amortized cost is still O(1)

Wrap Up

What have we done?

 We introduced amortized complexity
o average cost over a sequence of operations

 We learned how to determine the amortized complexity
o amortized analysis using the accounting method

 We used it to analyze unbounded arrays

 We implemented unbounded arrays

Operation Worst-case complexity Amortized complexity
uba_len O(1)

(same)
uba_new O(1)

uba_get O(1)

uba_set O(1)

uba_add O(n) O(1)

uba_rem O(n) O(1) Exercise

	Amortized Analysis
	The n-bit Counter
	Problem of the Day
	Understanding the Problem
	Understanding the Problem
	Solution #1
	Solution #2
	Understanding the Problem
	Solution #3
	Understanding the Problem
	Problem Solved?
	Problem Solved?
	Analyzing the n-bit Counter
	The n-bit Counter Revisited
	What are the Savings?
	The Token Invariant
	Proving the Token Invariant
	Proving the Token Invariant
	Proving the Token Invariant
	Proving the Token Invariant
	Proving the Token Invariant
	Proving the Token Invariant
	Solution #3
	What does the $2 fee Represent?
	Amortized Complexity Analysis
	Sequences of Operations
	Amortized Cost
	Amortized Cost
	A New Notion of “Average”
	A New Notion of “Average”
	Amortization in Practice (I)
	Amortization in Practice (II)
	When to Use Amortized Analysis?
	How to do Amortized Analysis?
	How to Determine the Amortized Cost?
	Unbounded Arrays
	Another Problem
	Another Problem
	The Unbounded Array Interface
	Towards an Implementation
	Towards an Implementation
	Towards an Implementation
	Towards an Implementation
	Towards an Implementation
	Towards an Implementation
	Towards an Implementation
	Towards an Implementation
	Towards an Implementation
	Towards an Implementation
	Resizing the Array
	Resizing the Array
	Resizing the Array
	Resizing the Array
	Analyzing Unbounded Arrays
	Amortized Cost of uba_add
	Amortized Cost of uba_add
	Amortized Cost of uba_add
	Amortized Cost of uba_add
	Amortized Cost of uba_add
	Amortized Cost of uba_add
	Amortized Cost of uba_add
	Amortized Cost of uba_add
	Amortized Cost of uba_add
	Amortized Cost of uba_add
	Amortized Cost of uba_add
	Amortized Cost of uba_add
	Amortized Cost of uba_add
	Amortized Cost of uba_add
	What about the Other Operations?
	Implementing Unbounded Arrays
	Let’s implement them!
	Concrete Type
	Representation Invariants
	Basic Array Operations
	Adding an Element
	Resizing the Array
	Unbounded Arrays in the Wild
	Python “Lists”
	How are Python Lists Implemented?
	How are Python Lists Implemented?
	How are Python Lists Implemented?
	Wrap Up
	What have we done?

