
Linux Tutorial
BY: EDUARDO FEO
BASED ON ALEX STANESCU’S SLIDES

What is (GNU)Linux?

 Linux is the kernel

 Many Linux-based OS (Ubuntu, Debian, Red Hat)

 Like Windows, MacOS, Android, etc…

The Terminal

 In Linux, we generally use a text-based program called the terminal to
run programs, edit files, and generally do everything we need to do

 The terminal allows us to interact with the OS on a deeper level than
graphical interfaces.

 The terminal looks something like this:

 Notice the $. Whenever we show commands, we usually include either
a $ or a % (called the prompt). DO NOT WRITE THIS IN THE
TERMINAL.

The Anatomy of A Command

 Let’s take a command and break it down to better showcase it

 The first part (ls) is the actual name of the command

 Next, we have flags. Flags are denoted by the dash (-), and provide extra
information for the command.

 -l indicates that we should give the user more information (like the date last
modified)

 We can also give multiple flags by just adding them to
the dash like in the example to the right

 The last part is the main argument to the command
itself (in this case Documents/)

The Anatomy of a Command (con’t)

 Commands can take multiple arguments (see grep later on this page)

 Some flags can themselves take arguments

 Some flags are not represented by just one letter

vs.

More info on commands

 The man page for any given command contains more info about the
command

 Accessed using the man command in terminal

 The man page contains a lot of info

 Description (What the command does)

 Synopsis (How to use the command)

 Options (What optional flags you can pass in)

 You can even search for a WORD by typing /WORD and hitting enter

 Take a look at the man page for grep!

 Some commands also have a -h or --help flag that you can use

Navigating Your File System

 In Windows/Mac, we navigate the file system by clicking on folders and
opening them.

 In Linux, we can do that as well, but it faster and typically more useful to use
the terminal. Here “folders” are also referred to as “directories”

 In the terminal, there are three useful commands for navigating your
filesystem

 cd (Change Directory)

 ls (LiSt files)

 pwd (Print Working Directory)

Special Directories

 There are five special directories

 / = The root directory (i.e. the most upper-level directory)

 ~ = The home directory (On afs this is something like /afs/andrew.cmu.edu/usr23/
acarnegie)

 . = The current directory

 .. = The previous directory (i.e. one level up)

 - = Last working directory

 These directories can always be accessed at any point with commands like
cd and ls

 These special directories can also be part of paths (e.g. cd
~/private/15122/)

Affecting Files

 There are many useful commands for creating, editing, removing, etc
files. A shortlist is below:

 rm – Removes the given file (rm file.txt) USE WITH CARE

 cp – Copies the given file to a different location (cp oldloc newloc)

 mv – Moves the given file to a different location (mv oldloc newloc)

 mkdir – Makes a directory at the given location (mkdir newdir)

 grep – search the given file for a string (grep ”string” file)

 More info can be found by googling a command or in the man pages for
each command

Transferring Files to/from AFS

 For this, we generally use a command called scp (Secure Copy). This takes
in two arguments, the original file to transfer, and the location to transfer to
(in that order)

 For instance, if I wanted to transfer a file from AFS to our computer, I’d run
scp astanesc@unix.andrew.cmu.edu:private/15122/testfile.txt ./

 I could also rename the file while transferring by giving the destination as a
file (i.e. give it a name) rather than as a directory. For example, I could run
scp astanesc@unix.andrew.cmu.edu:private/15122/testfile.txt
newfile.txt

 On the other hand if I wanted to transfer a file from my computer to AFS, I’d
run scp testfile.txt astanesc@unix.andrew.cmu.edu:private/15122/

Compressed Files

 On Windows, you may be familiar with the .zip extension for
compressed archives (where an archive is just a collection of files with
some associated metadata)

 On Linux, two different extensions are used two represent the
compression and the archive.

 A .tar archive is a group of files with some associated metadata

 A .gz file is a g-zipped file – a compressed file. This is similar to .zip, but it is
not an archive, but simply a file

 Combined, these two form a .tar.gz or simply, a .tgz archive, which is a
compressed archive (like .zip in Windows)

Compressing/Uncompressing Files

 In this (and future) CS classes, handouts and handins are given as
compressed archives (a tgz file).

 To compress/uncompress these, we use the command tar. Tar supports
both compressing and uncompressing.

 To compress, we run tar –czvf archive.tgz file1 file2 file3 … where
file1, file2, file3 … are the files to compress, and archive.tgz is the file
that we are creating. The flags are:

 c: Compress

 z: G-zip the archive . If you just want to just create a tar file, leave this
argument off

 v: Verbose (show every file that we are compressing)

 f archive.tgz: Write to the file archive.tgz

Compress/Uncompress Files

 To uncompress, we simply change the –c to a –x (for expand). Thus, in
the previous example, we would change the command to tar -xzvf
archive.tgz

 Note: For whatever reason, some browsers (for example chrome)
automatically unzip .tgz files without notifying the user. If you download
a .tgz file, make sure to leave off the –z flag.

 See the man page for tar for more info

 You can also use file to determine the file type

EMACS

• Over 10,000 built-in commands
• LISP
• Modifiers:

• C- Control
• M- Meta
• S- Shift

• Some examples
• C-d: calls delete-char
• C-% search and replace

• Some of the emacs commands also work in the shell!
• C-r and C-s to navigate the bash history

Speeding up your work

 Use <TAB>, <TAB>, …, <TAB>

 Can be used to autocomplete files, the command itself, directories and most
anything

Speeding up your work

 Bash history

 Up/down arrow navigates through your history

 Search past commands: CTRL+r search_term

 Reuse the previous command in present command with !!

 Reuse the last item from the previous command with ALT+.

Speeding up your work

 Use less to read a file

 Use grep <search_term> to search within files

 Use find to search files within directories

 Redirect input and output with < and >

Speeding up your work

 Multiple commands

 command_1; command_2; ...

 command_1 && command_2 && ...

Speeding up your work

 Pipes: connect input and output in a sequence of commands

 command_1 | command_2

Final Remarks

 Stuck?

 Read Error Messages

 Check the man page

 Google it!

 Ask on Diderot

 Ask a friend

 Come to office Hours!

