
Linux Tutorial
BY: EDUARDO FEO
BASED ON ALEX STANESCU’S SLIDES

What is (GNU)Linux?

 Linux is the kernel

 Many Linux-based OS (Ubuntu, Debian, Red Hat)

 Like Windows, MacOS, Android, etc…

The Terminal

 In Linux, we generally use a text-based program called the terminal to
run programs, edit files, and generally do everything we need to do

 The terminal allows us to interact with the OS on a deeper level than
graphical interfaces.

 The terminal looks something like this:

 Notice the $. Whenever we show commands, we usually include either
a $ or a % (called the prompt). DO NOT WRITE THIS IN THE
TERMINAL.

The Anatomy of A Command

 Let’s take a command and break it down to better showcase it

 The first part (ls) is the actual name of the command

 Next, we have flags. Flags are denoted by the dash (-), and provide extra
information for the command.

 -l indicates that we should give the user more information (like the date last
modified)

 We can also give multiple flags by just adding them to
the dash like in the example to the right

 The last part is the main argument to the command
itself (in this case Documents/)

The Anatomy of a Command (con’t)

 Commands can take multiple arguments (see grep later on this page)

 Some flags can themselves take arguments

 Some flags are not represented by just one letter

vs.

More info on commands

 The man page for any given command contains more info about the
command

 Accessed using the man command in terminal

 The man page contains a lot of info

 Description (What the command does)

 Synopsis (How to use the command)

 Options (What optional flags you can pass in)

 You can even search for a WORD by typing /WORD and hitting enter

 Take a look at the man page for grep!

 Some commands also have a -h or --help flag that you can use

Navigating Your File System

 In Windows/Mac, we navigate the file system by clicking on folders and
opening them.

 In Linux, we can do that as well, but it faster and typically more useful to use
the terminal. Here “folders” are also referred to as “directories”

 In the terminal, there are three useful commands for navigating your
filesystem

 cd (Change Directory)

 ls (LiSt files)

 pwd (Print Working Directory)

Special Directories

 There are five special directories

 / = The root directory (i.e. the most upper-level directory)

 ~ = The home directory (On afs this is something like /afs/andrew.cmu.edu/usr23/
acarnegie)

 . = The current directory

 .. = The previous directory (i.e. one level up)

 - = Last working directory

 These directories can always be accessed at any point with commands like
cd and ls

 These special directories can also be part of paths (e.g. cd
~/private/15122/)

Affecting Files

 There are many useful commands for creating, editing, removing, etc
files. A shortlist is below:

 rm – Removes the given file (rm file.txt) USE WITH CARE

 cp – Copies the given file to a different location (cp oldloc newloc)

 mv – Moves the given file to a different location (mv oldloc newloc)

 mkdir – Makes a directory at the given location (mkdir newdir)

 grep – search the given file for a string (grep ”string” file)

 More info can be found by googling a command or in the man pages for
each command

Transferring Files to/from AFS

 For this, we generally use a command called scp (Secure Copy). This takes
in two arguments, the original file to transfer, and the location to transfer to
(in that order)

 For instance, if I wanted to transfer a file from AFS to our computer, I’d run
scp astanesc@unix.andrew.cmu.edu:private/15122/testfile.txt ./

 I could also rename the file while transferring by giving the destination as a
file (i.e. give it a name) rather than as a directory. For example, I could run
scp astanesc@unix.andrew.cmu.edu:private/15122/testfile.txt
newfile.txt

 On the other hand if I wanted to transfer a file from my computer to AFS, I’d
run scp testfile.txt astanesc@unix.andrew.cmu.edu:private/15122/

Compressed Files

 On Windows, you may be familiar with the .zip extension for
compressed archives (where an archive is just a collection of files with
some associated metadata)

 On Linux, two different extensions are used two represent the
compression and the archive.

 A .tar archive is a group of files with some associated metadata

 A .gz file is a g-zipped file – a compressed file. This is similar to .zip, but it is
not an archive, but simply a file

 Combined, these two form a .tar.gz or simply, a .tgz archive, which is a
compressed archive (like .zip in Windows)

Compressing/Uncompressing Files

 In this (and future) CS classes, handouts and handins are given as
compressed archives (a tgz file).

 To compress/uncompress these, we use the command tar. Tar supports
both compressing and uncompressing.

 To compress, we run tar –czvf archive.tgz file1 file2 file3 … where
file1, file2, file3 … are the files to compress, and archive.tgz is the file
that we are creating. The flags are:

 c: Compress

 z: G-zip the archive . If you just want to just create a tar file, leave this
argument off

 v: Verbose (show every file that we are compressing)

 f archive.tgz: Write to the file archive.tgz

Compress/Uncompress Files

 To uncompress, we simply change the –c to a –x (for expand). Thus, in
the previous example, we would change the command to tar -xzvf
archive.tgz

 Note: For whatever reason, some browsers (for example chrome)
automatically unzip .tgz files without notifying the user. If you download
a .tgz file, make sure to leave off the –z flag.

 See the man page for tar for more info

 You can also use file to determine the file type

EMACS

• Over 10,000 built-in commands
• LISP
• Modifiers:

• C- Control
• M- Meta
• S- Shift

• Some examples
• C-d: calls delete-char
• C-% search and replace

• Some of the emacs commands also work in the shell!
• C-r and C-s to navigate the bash history

Speeding up your work

 Use <TAB>, <TAB>, …, <TAB>

 Can be used to autocomplete files, the command itself, directories and most
anything

Speeding up your work

 Bash history

 Up/down arrow navigates through your history

 Search past commands: CTRL+r search_term

 Reuse the previous command in present command with !!

 Reuse the last item from the previous command with ALT+.

Speeding up your work

 Use less to read a file

 Use grep <search_term> to search within files

 Use find to search files within directories

 Redirect input and output with < and >

Speeding up your work

 Multiple commands

 command_1; command_2; ...

 command_1 && command_2 && ...

Speeding up your work

 Pipes: connect input and output in a sequence of commands

 command_1 | command_2

Final Remarks

 Stuck?

 Read Error Messages

 Check the man page

 Google it!

 Ask on Diderot

 Ask a friend

 Come to office Hours!

