
15-122: Principles of Imperative Computation Spring 2020

Recitation 2: A Bit About Bytes Tuesday January 21st

Converting between binary and decimal

To easily convert a number represented in binary notation, such as 10100[2], we can employ Horner's

algorithm. At each step, we multiply the previous result by 2, and add the next bit in the number.

To convert in the other direction, we divide by 2 and write the remainder at each step from bottom

to top. We can see the conversion between 10100[2] and 20 (or 20[10] to be extra-decimaly) below.

× 2 + = × 2 + = × 2 + =
× 2 + = × 2 + = × 2 + =
× 2 + 1 = 1 × 2 + = × 2 + =

1 × 2 + 0 = 2 × 2 + = × 2 + =
2 × 2 + 1 = 5 × 2 + = × 2 + =
5 × 2 + 0 = 10 × 2 + = × 2 + =
10 × 2 + 0 = 20 × 2 + = × 2 + =

Checkpoint 0

What is the decimal representation of 1111010[2]?

What is the binary representation of 49[10]?

Hexadecimal notation

Hex is useful because every hex digit corresponds to exactly 4 binary digits (bits). Base 8 (octal) is

similarly useful: each octal digit corresponds to exactly 3 bits. However, hex more evenly divides

up a 32-bit integer. In C0 we indicate we are using base 16 with an 0x pre�x, so 7f2c[16] is 0x7f2c.

Hex 0 1 2 3 4 5 6 7 8 9 a b c d e f

Bin. 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

Dec. 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Convert the binary number 1011111010101101[2] to hex.

Convert the hexadecimal number 0x20 to decimal.

Why wouldn't it make sense to write a C0 function that converts hex numbers to decimal numbers?

Bit manipulation

and

& 1 0

1 1 0

0 0 0

or

| 1 0

1 1 1

0 1 0

xor (exclusive or)

^ 1 0

1 0 1

0 1 0

complement

~ 1 0

0 1

There are also shift operators. They take a number and shift it left (or right) by the speci�ed

number of bits. In C0, right shifts sign extend. This means that if the �rst digit was a 1, then 1s

will be copied in as we shift.

1101 1111 0101 0010[2] >> 8 = 1111 1111 1101 1111[2]

Checkpoint 1

What does (0001 0101[2] & 0011 0101[2]) | (1010 1010[2] ∧ 0001 1110[2]) evaluate to?

What does (5[10] | 13[10]) ∧ (28[10] & 10[10]) evaluate to?

What is the di�erence between logical and bitwise operators?

Two's complement

Because C0's int type only represents integers in the range [−231, 231), addition and multiplication

are de�ned in terms of modular arithmetic. As a result, adding two positive numbers may give you

a negative number!

Checkpoint 2

Write a function that returns 1 if the sign bit is 1, and 0 otherwise. That is, write a function that

returns the sign bit shifted to be the least signi�cant bit. Your solution can use any of the bitwise

operators, but will not need all of them.

1 int getSignBit(int x)
2 //@ensures \result == 0 || \result == 1;
3 {
4 return ;
5 }

Checkpoint 3

What assertion would you need to write to ensure that an addition would give a result without

over�owing (in other words, to ensure that the result you get in C0 is the same as the result you

get with true integer arithmetic).

int safe_add(int a, int b)
/*@requires

@*/
{ return a + b; }

What about multiplication? For simplicity, you can assume both numbers are non-negative.

int safe_mult(int a, int b)
/*@requires a >= 0 && b >= 0 &&

@*/
{ return a * b; }

ARGB representation of color

In C0 we use 32-bit ints to represent a single integer. However, it's possible to use the bits in other

ways: as 32 separate Boolean values or as 4 separate 8-bit numbers in the range [0, 255]. This lets
us represent a color (red, green, and blue intensities, plus transparency or �alpha�) as an int:

