Recitation 2: A Bit About Bytes

Tuesday January $21^{\text {st }}$

Converting between binary and decimal

To easily convert a number represented in binary notation, such as $10100_{[2]}$, we can employ Horner's algorithm. At each step, we multiply the previous result by 2 , and add the next bit in the number. To convert in the other direction, we divide by 2 and write the remainder at each step from bottom to top. We can see the conversion between $10100_{[2]}$ and 20 (or $20_{[10]}$ to be extra-decimaly) below.

$\ldots \quad \times 2+\ldots=$
$\ldots \times 2+\ldots=$
$\ldots \times 2+\ldots=$
$\ldots \times 2+\ldots=$ $\square \begin{aligned} & \times 2+\ldots= \\ & \times 2+\square=\end{aligned}$
$\square \times 2+\square=\square$

Checkpoint 0

What is the decimal representation of $1111010_{[2]}$? \qquad
What is the binary representation of $49_{[10]}$?

Hexadecimal notation

Hex is useful because every hex digit corresponds to exactly 4 binary digits (bits). Base 8 (octal) is similarly useful: each octal digit corresponds to exactly 3 bits. However, hex more evenly divides up a 32 -bit integer. In C 0 we indicate we are using base 16 with an $0 x$ prefix, so $7 f 2 c_{[16]}$ is $0 \times 7 f 2 c$.

Hex	0	1	2	3	4	5	6	7	8	9	a	b	c	d	e	f
Bin.	0000	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010	1011	1100	1101	1110	1111
Dec.	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15

Convert the binary number $1011111010101101_{[2]}$ to hex.
Convert the hexadecimal number 0×20 to decimal.
Why wouldn't it make sense to write a C0 function that converts hex numbers to decimal numbers?

Bit manipulation

and			or			xor (exclusive or)			complement		
\&	1	0	1	1	0	\wedge	1	0	\sim	1	0
1	1	0	1	1	1	1	0	1		0	1
0	0	0	0	1	0	0	1	0			

There are also shift operators. They take a number and shift it left (or right) by the specified number of bits. In C0, right shifts sign extend. This means that if the first digit was a 1 , then 1 s will be copied in as we shift.

$$
1101111101010010_{[2]} \gg 8=1111111111011111_{[2]}
$$

Checkpoint 1

What does $\left(00010101_{[2]} \& 00110101_{[2]}\right) \mid\left(10101010_{[2]} \wedge 00011110_{[2]}\right)$ evaluate to?

What does $\left(5_{[10]} \mid 13_{[10]}\right) \wedge\left(28_{[10]} \& 10_{[10]}\right)$ evaluate to?
What is the difference between logical and bitwise operators?

Two's complement

Because C0's int type only represents integers in the range $\left[-2^{31}, 2^{31}\right.$), addition and multiplication are defined in terms of modular arithmetic. As a result, adding two positive numbers may give you a negative number!

Checkpoint 2

Write a function that returns 1 if the sign bit is 1 , and 0 otherwise. That is, write a function that returns the sign bit shifted to be the least significant bit. Your solution can use any of the bitwise operators, but will not need all of them.

```
int getSignBit(int x)
//@ensures \result == 0 || \result == 1;
3 {
5 }
```


Checkpoint 3

What assertion would you need to write to ensure that an addition would give a result without overflowing (in other words, to ensure that the result you get in C 0 is the same as the result you get with true integer arithmetic).

```
int safe_add(int a, int b)
```

/*@requires

```
@*/
{ return a + b; }
```

What about multiplication? For simplicity, you can assume both numbers are non-negative.

```
int safe_mult(int a, int b)
/*@requires a >= 0 && b >= 0 &&
```

@*/
\{ return a * b; \}

ARGB representation of color

In C0 we use 32-bit ints to represent a single integer. However, it's possible to use the bits in other ways: as 32 separate Boolean values or as 4 separate 8 -bit numbers in the range [0,255]. This lets us represent a color (red, green, and blue intensities, plus transparency or "alpha") as an int:

Sample Length:	8							8								8								8							
Channel Membership:	Alpha							Red								Green								Blue							
Bit Number:	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

