15-122: Principles of Imperative Computation Spring 2020

Recitation 3: Function Family Reunion Tuesday January 28th

Big-O definition
The definition of big-O has a lot of mathematical symbols in it, and so can be very confusing at

first. Let’s familiarize ourselves with the formal definition and get an intuition behind what it’s
saying.

O(g(n)) is a set of functions, where f(n) € O(g(n)) if and only if:

there is some and some

such that for all ,

Although it isn’t technically correct set notation, it is also common to write f(n) = O(g(n)).

Big-O intuition

resources
T (time, space, ...)

%

To the left of ng, the functions can do anything.
To its right, c g(n) is always greater than or equal to f(n).

Intuitively, O(g(n)) is the set of all functions that g(n) can outpace in the long run (with the help of
a constant scaling factor). For example, n? eventually outpaces 3nlog(n) + 5n, so 3nlog(n) + 5n €
O(n?). Because we only care about long run behavior, we generally can discard constants and can
consider only the most significant term in a function.

There are actually infinitely many functions that are in O(g(n)): If f(n) € O(g(n)), then 3 f(n) €
O(g(n)) and 1 f(n) € O(g(n)) and 2f(n) € O(g(n)). In general, for any constants ki, ke, k1 f(n) +
k2 € O(g(n)).

Checkpoint 0

Rank these big-O sets from left to right such that every big-O is a subset of everything to the right
of it. (For instance, O(n) goes farther to the left than O(n!) because O(n) C O(n!).) If two sets
are the same, put them on top of each other.

O(n!) O(n) O(4) O(nlogn) O(4n+3) O(n?+20000n +3) O(1) O(n?) O(2")
O(logn) O(log?n) O(log(logn))

Checkpoint 1
Using the formal definition of big-O, prove that n® 4+ 300n? € O(n?).



Simplest, tightest bounds

Something that will come up often with big-O is the idea of a tight bound on the runtime of a
function.

It’s technically correct to say that binary search, which takes around logn steps on an array of
length n, is O(n!), since n! > logn for all n > 0 but it’s not very useful. If we ask for a tight bound,
we want the closest bound you can give. For binary search, O(logn) is a tight bound because no
function that grows more slowly than logn provides a correct upper bound for binary search.

Unless we specify otherwise, we want the simplest, tightest bound!

Checkpoint 2
Simplify the following big-O bounds without changing the sets they represent:

O(3n2®+2n?) can be written more simply as

O(log;y n+logy(7n)) can be written more simply as

Onme interesting consequence of the second result in Checkpoint 2 is that O(log; n) = O(log; n) for
all 7 and j (as long as they’re both greater than 1), because of the change of base formula:

log; n

log; n =

log; i
But ﬁji is just a constant! So, it doesn’t matter what base we use for logarithms in big-O notation.
When we ask for the simplest, tightest bound in big-O, we’ll usually take points off if you write, for
instance, O(logy n) instead of the simpler O(logn).

Checkpoint 3

Give the simplest, tightest bound for the following functions:

f(n) = 16n?+5n+2 €

g(n,m) =nlSx16m €

h(z,y, z) = max(z,y)+2'% €
Checkpoint 4

For the following two functions, determine the big- 1 int big0_2(int[] L, int n) {
O bound: » int[] A = alloc_array(int, n);
3
4 for (int i = 0; i < n; i++)
5 A[i] = L[i];
1 int big0_1(int n) { 6
> int[] A = alloc_array(int, n); 7 for (int 1 = 0; i < n; i++) {
3 for (int 1 =0; i < n; i++) { 8 c =n;
4 for (int j = 0; j < n; j++) { 9 while (c > 0) {
5 Ali] += §; 10 L[i] += 122;
6 } 11 c /= 4;
7} 12 }
g f(A, n); //assume f takes O(log(n)) time |1z }
9 return A[n-1]; 14 return L[n/2];
10 } 15 }




