
15-122: Principles of Imperative Computation Spring 2020

Recitation 9: Rotating Rotation Thursday March 19th

Binary search trees

A binary tree, like a linked list, is a recursive data structure. The only di�erence is that a node can

have 0, 1, or 2 children, which can be other nodes or leaves. A leaf is a type of node that has no

children.

typedef struct tree_node tree;
struct tree_node {
elem data;
tree* left;
tree* right;

};

We call left and right subtrees.

A binary search tree (BST) has an additional invariant, the ordering invariant. For a node with key

k, all elements in the left subtree must have keys that are strictly less than than k, and all elements

in the right subtree must have keys that are strictly greater than k (By this de�nition, we do not

allow duplicate keys).

Checkpoint 0

Circle all of the nodes that contain keys that violate the ordering invariant.
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Balanced search tree

Let's take a look at two binary trees that contain the same elements.
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The height of the left tree is 7, while the height of the right tree is only 3. Say we want to access

the element 9. In the left tree, we need to travel down 7 levels, while on the right we only need to

go down 3. Remember that we have to do a comparison at each level, so we'd like our trees to be

as short as possible.

AVL trees

AVL trees add an additional invariant in order to ensure the tree is balanced. The height invariant

requires the height of the left and right subtrees only di�er by at most 1. How do we preserve this

invariant? Rotations.

We insert nodes just as we would with a plain BST, but then check to see if (and where) the height

invariant is violated. Say we insert 5 into the following tree:
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Our tree is looking pretty unbalanced. But where is the violation? 6 and 9's subtrees only di�er by

1, but the left subtree of 15 has height 3, while the right has height 1. To �x this, we rotate right

at 15. Notice that 12 is now the left child of 15, rather than the right child of 9.

Use the visualization at http://www.cs.usfca.edu/~galles/visualization/AVLtree.html to

insert 1, 2, 5, 3, 4 into the tree in the following order, then delete the keys 2 and 4.

Checkpoint 1

Now that you've seen rotations, let's write code.

tree* rotate_right(tree* T)
//@requires is_tree(T) && T != NULL && T->left !=NULL;
//@ensures is_tree(\result);
{

tree* L =

}

http://www.cs.usfca.edu/~galles/visualization/AVLtree.html


The code for rotate_left is simply the mirror of this function.



However, sometimes a single rotation is insu�cient to rebalance an AVL tree and we need to perform

two rotations. Consider inserting 13 into the following tree. Once again our tree is unbalanced at

node 15. However, if we rotate right as in the previous example, the tree is still unbalanced!
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Checkpoint 2

What two rotations can we perform that will rebalance the above tree? Draw the resulting tree.

Checkpoint 3

In general, in what situations is only one rotation necessary? In what situation do we need two

rotations?


