
15-122: Principles of Imperative Computation Spring 2020

Recitation 11: From C1 to Shining C Thursday April 2nd

Header �les

In C0 and C1, we usually wrote the interface and implementation of our data structures in the
same �le. Unfortunately, this means that if we want to show clients our data structure's interface,
we end up showing them our implementation too! C solves this by separating the interface and
implementation respectively into a header �le and a source �le. A header �le for BST's is shown
below:

#ifndef _BST_H_

#define _BST_H_

typedef struct bst_header bst;
typedef int compare_fn(void *e1, void *e2);
typedef void free_fn(void* e);

bst *bst_new(compare_fn *elem_compare, free_fn *elem_free);
void bst_insert(bst *B, void *e); /* e cannot be NULL! */
void *bst_lookup(bst *B, void *e); /* return NULL if not in tree */
void bst_free(bst *B);

#endif

Header �les usually only contain type and function declarations for the client and no actual code.

Aside: the #ifndef, #define, and #endif lines are known as header guards, and they prevent the
header �le from being included too many times in a �le.

Contracts

Contracts are a core part of the C0 and C1 languages. Unfortunately, we don't have the power
to build contracts into C. Don't lose hope, though! We provide you with a supplemental con-
tracts library so you can continue to program with contracts. To use it, you'll need to put
#include "path/to/contracts.h" at the top of your C �le. Also, you'll need to pass the -DDEBUG
�ag instead of -d when you compile with gcc if you want contracts to be checked.

The �le contracts.h provides you with REQUIRES, ENSURES, and ASSERT. You can treat these as
C functions1 that replace our contracts in the following way:

(a) //@requires can be replaced by REQUIRES at the very beginning of the function.

(b) //@ensures can be replaced by ENSURES before every return statement and/or at the end of
the function.

(c) //@loop_invariant can be replaced by ASSERT before the loop runs and at the end of each
loop iteration.

(d) //@assert can be replaced by ASSERT.
1To be precise, these are actually C macros that preprocessing reduces to native C assert statements during

compilation. Shhh, don't tell.



Checkpoint 0

Rewrite the following C0 function into C. Only the contracts will need to be changed.

1 int length(list* start, list* end)
2 //@requires is_segment(start, end);
3 //@ensures \result > 0;
4 {
5 int length = 0;
6 while (start != end)
7 //@loop_invariant is_segment(start, end);
8 {
9 length++;

10 start = start->next;
11 }
12 return length;
13 }

Memory allocation

In C0 and C1, we had the functions alloc, which allocated enough memory for a singleton of some
type, and alloc_array, which allocated enough memory for an array of some type. In C, there is
only2 malloc, which takes one argument � the amount of memory you want.

For example, an equivalent of alloc(struct list_node) in C is malloc(sizeof(struct list_node)),
and the equivalent of alloc_array(int, 3) in C is malloc(3*sizeof(int)).

However, malloc can return NULL when out of memory. Usually you would have to check the return
value to see if it is NULL, but we provide you with a replacement for malloc that does this check for
you: xmalloc. To use it, put #include "path/to/xalloc.h" at the beginning of your C �le.

Freeing memory

After you are done using any memory referenced by a pointer returned by malloc or calloc, you
must free it or your program will have �memory leaks� (in C0 and C1, something called a garbage
collector does this automatically). You can free such memory by passing a pointer to it to free.
Once you free it, it is unde�ned to access that memory. Also, don't free memory that was previously
freed. That also results in unde�ned behavior.

When we design libraries for data structures like stacks and BST's, it's important to specify whether
the client or library is responsible for freeing each piece of memory that is malloced. Usually,
whoever allocates the memory �owns� it and is responsible for freeing it, but in data structures like
BST's, we may want to transfer ownership of the memory to the data structure. Thus, we ask the
client to supply a �freeing� function in bst_new for BST elements, so that when the client calls
bst_free, we can call their �freeing� function on every element in the BST. If the function pointer
the client gives us is NULL, then we don't free the BST elements.

2Note that malloc does not initialize the memory it allocates to 0. If you require this, there is a variant of
malloc called calloc (and a corresponding xcalloc) that does this.



Checkpoint 1

Rewrite bst_new (which should take in a pointer to a �freeing function�) and bst_insert into C,
and write the function bst_free, which frees all the memory that the BST is responsible for.

1 typedef int compare_fn(void* e1, void* e2);
2

3 typedef struct tree_node tree;
4 struct tree_node {
5 void* data;
6 tree* left;
7 tree* right;
8 };
9

10 typedef struct bst_header bst;
11 struct bst_header {
12 tree* root;
13 compare_fn* compare;
14 };
15

16 bst* bst_new(compare_fn* compare)
17 //@requires compare != NULL;
18 //@ensures is_bst(\result);
19 {
20 bst* B = alloc(struct bst_header);
21 B->root = NULL;
22 B->compare = compare;
23 return B;
24 }
25

26 tree* tree_insert(tree* T, void* e, compare_fn* compare)
27 //@requires e != NULL && compare != NULL && is_tree(T, compare);
28 //@ensures is_tree(\result, compare);
29 {
30 if (T == NULL) { /* create new node and return it */
31 T = alloc(struct tree_node);
32 T->data = e;
33 T->left = NULL; T->right = NULL;
34 return T;
35 }
36 int r = (*compare)(e, T->data);
37 if (r == 0) {
38 T->data = e; /* modify in place */
39 } else if (r < 0) {
40 T->left = tree_insert(T->left, e, compare);
41 } else {
42 //@assert r > 0;
43 T->right = tree_insert(T->right, e, compare);
44 }
45 return T;
46 }
47

48 void bst_insert(bst* B, void* e)
49 //@requires is_bst(B);



50 //@requires e != NULL;
51 //@ensures is_bst(B);
52 {
53 B->root = tree_insert(B->root, e, B->compare);
54 return;
55 }

Write bst_free here:


