
15-122: Principles of Imperative Computation Spring 2020

Recitation 12: C-ing is Believing Thursday April 16th

printf

C0 and C1 had di�erent print functions for each type: printint, printbool, println, etc. In C,

there is just one main print function: printf. It always takes in a string, but you can use format

speci�ers to print other types. Feel free to search online for format speci�ers for more types.1

Checkpoint 0

#include <stdio.h> // this lets us use the printf function

int main() {
int x = 64;
printf("%d\n", x); // decimal (can also use %i)
printf("%x\n", x); // hexadecimal
char a = ’d’; // single quotes!
printf("%c\n", a);
printf("%d\n", a);
char* s = "hello"; // double quotes!
printf("%s\n", s);
void* p = (void*)0xdeadbeef;
printf("%p\n", p); // must be a void*, not any other pointer type
size_t z = 8;
printf("%zu\n", z);

}

What is the output of this program?

structs on the stack

In C0 and C1, if we ever wanted to create a struct, we had to explicitly allocate memory for it

using alloc. C doesn't have this restriction � you can declare struct variables on the stack, just

like int's. We set a �eld of a struct with dot-notation, below. Recall that when we had a pointer

p to a struct, we accessed its �elds with p->data. This is just syntactic sugar for (*p).data.

Checkpoint 1

#include <stdio.h>

struct point {
int x;
char y;

};
int main () {

struct point a;
a.x = 3;
a.y = ’c’;
struct point b = a;
b.x = 4;
printf("a.x, a.y: %d, %c\n", a.x, a.y); // what gets printed out here?
printf("b.x, b.y: %d, %c\n", b.x, b.y); // how about here?

}

1The C++ document http://cplusplus.com/reference/cstdio/printf is a good reference (C behaves simi-
larly).

http://cplusplus.com/reference/cstdio/printf

Addressing all things

We have already seen the �address-of� operator, &, used to �nd function pointers in C1. In C, we

can do the same thing with variables. This is useful if you want to give a function a reference to a

local variable. Remember to only free pointers returned from malloc!

Checkpoint 2

#include <stdio.h>
#include "lib/contracts.h"

void bad_mult_by_2(int x) {
x = x * 2;

}

void mult_by_2(int* x) {
REQUIRES(x != NULL);

*x = *x * 2;
}

int main () {
int a = 4;
int b = 4;
bad_mult_by_2(a);
mult_by_2(&b);
printf("a: %d b: %d\n", a, b);
return 0;

}

#include <stdio.h>
#include "lib/contracts.h"
struct point {
int x;
int y;

};
void swap_points(struct point* P) {
REQUIRES(P != NULL);
int temp = P->x;
P->x = P->y;
P->y = temp;

}
int main() {
struct point A;
A.x = 122;
A.y = 15;
swap_points(&A);
printf("A: (%d, %d)\n", A.x, A.y);
return 0;

}

What is the output when each of these programs are run?

Casting

C introduces many di�erent types to represent integer values. Sometimes, if we really know what

we are doing, we may want or need to convert between these types. We can do so by casting.

(a) Casting from small signed to large signed: the value is sign-extended with the sign bit (most

signi�cant bit) but remains unchanged.

(b) Casting from small unsigned to large unsigned: the value is padded with leading zeroes but

remains unchanged.

(c) Casting from signed to unsigned of the same size: the value in the new type is equal to that

in the old type, modulo INT_MAX for the new type. In other words, the bit pattern does not

change, but if the original value was negative, then the value will change.

(d) Casting from unsigned to signed of the same size: if the unsigned value is expressible in the

signed type, then that is the new value and neither the bit pattern nor the value changes.

Otherwise this is implementation-de�ned.

Casts between pointers and integers, or casts between large integer types to small integer types

are both implementation-de�ned. Additionally, we don't require you to know what happens when

casting directly from small to large between signed and unsigned.2

The general rule of thumb is that value is preserved whenever possible, and the bit pattern is

preserved otherwise.

2It is either implementation de�ned, or confusing. See section 6.3.1.3 of the C99 standard at
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1256.pdf.

http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1256.pdf

switch statements

A switch statement is a di�erent way of expressing a conditional. Here's an example:

void print_dir(char c) {
switch (c) {

case ’l’:
printf("Left\n");
break;

case ’r’:
printf("Right\n");
break;

case ’u’:
printf("Up\n");
break;

case ’d’:
printf("Down\n");
break;

default:
fprintf(stderr, "Specify a valid direction!\n");

}
}

Each case's value should evaluate to a constant integer type (this can be of any size, so chars, ints,
long long ints, etc).

The break statements here are important: If we don't have them, we get fall-through: without the

break on line 11 we'd print �Up� and then �Down� for case ’u’.

Here's some code that takes a positive number at most 10 and determines whether it is a perfect

square. The behavior here is called fall-through.

int is_perfect_square(int x) {
REQUIRES(1 <= x && x <= 10);
switch (x) {

case 1:
case 4:
case 9:

return 1;
default:

return 0;
}

}

Fall-through is useful but can be tricky. What's wrong with the following code? How do you �x it?

Checkpoint 3

#include <stdio.h>
#include <stdlib.h>
void check_parity(int x) {
switch (x % 2) {
case 0:
printf("x is even!\n");

default:
printf("x is odd!\n");

}
}

Checkpoint 4

What's wrong with each of these pieces of code?

(a)
1 int* add_sorta_maybe(int a, int b) {
2 int x = a + b;
3 return &x;
4 }

(b)
1 int main () {
2 unsigned int x = 0xFE1D;
3 short y = (short)x;
4 return 0;
5 }

(c)
1 int main() {
2 char* s = "15-122";
3 s[4] = ’1’; // blasphemy
4 printf(s);
5 return 0;
6 }

(d)
1 int main() {
2 int x = 0;
3 if (x = 1)
4 printf("woo\n");
5 return x;
6 }

(e)
1 int main() {
2 char s[] = {‘a’, ‘b’, ‘c’};
3 printf("%s\n", s);
4 return 0;
5 }

(f)
1 void print_int(int* i) {
2 printf("%d\n", *i);
3 free(i);
4 }
5

6 int main() {
7 int x = 6;
8 print_int(&x);
9 return 0;

10 }

