
15-122: Principles of Imperative Computation Spring 2020

Recitation 15: Union-�nding your Roots Thursday April 23rd

Kruskal's algorithm

Kruskal's algorithm is an algorithm to �nd a minimum weight spanning tree (often called a minimum

spanning tree) on a graph. Visualization: http://www.cs.usfca.edu/~galles/visualization/
Kruskal.html.

A spanning tree of a graph is a subgraph that is a tree and that connects all vertices of the graph.

(Remember that a tree is a connected graph with no cycles.)

A minimum spanning tree (MST) is simply a spanning tree whose edges have the minimum total

weight among all the spanning trees on the graph. A graph may have multiple di�erent MSTs.

Kruskal's algorithm is an algorithm that �nds the minimum spanning tree for a graph. The algorithm

works as follows:

1. Sort all edges by weight, from smallest weight to largest weight.

2. Go through the edges in order. If adding an edge would not create a cycle in the graph, add

it. When we have a minimum spanning tree (when the number of edges we've added is one less

than the number of vertices), we're done.

Union �nd

We can answer the question of whether an edge creates a cycle by tracking equivalence classes of

vertices. Two vertices are equivalent if there's a path from one to the other using the spanning tree

edges we've already added during Kruskal's algorithm.

We use the union �nd data structure to e�ciently maintain equivalence classes. We think of union

�nd as maintaining a directed graph called the equivalence graph, where each vertex has at most

one outgoing edge, and where following a series of directed edges eventually reaches the canonical

representative of the equivalence class, which has no outgoing edge.

Two elements are equivalent if and only if they have the same canonical representative. We can make

two elements equivalent (when we add an edge to the MST) by �nding their canonical representatives

and connecting them with an edge.

Checkpoint 0

Run Kruskal's algorithm on the weighted graph to the left to form a spanning tree. Track the

structure of the equivalence graph to the right. There's more than one answer.

Which edges that aren't even part of the original weighted graph end up as directed edges in the

equivalence graph?

http://www.cs.usfca.edu/~galles/visualization/Kruskal.html
http://www.cs.usfca.edu/~galles/visualization/Kruskal.html


Union-�nd implementation

Union �nd's equivalence graphs can be represented with arrays: the indices corresponding to non-

canonical representatives store the element that their directed edge in the equivalence graph points

to. Canonical representatives can store their own index, but in order to e�ciently implement union-

�nd, it's useful for canonical representatives to store a negative number, the absolute value of which

is the maximum height of any path to that canonical representative.

Checkpoint 1

For the following series of union operations, make the worst possible decision at every step when

you connect canonical representatives to try to make the paths as long as possible. Draw the state

of the array after every step. How long is the longest path?

Checkpoint 2

Describe a series of unions that could lead to this equivalence graph:

Checkpoint 3

If we use the tree-height storing version of union �nd on the unions from the last checkpoint, what

happens?

Checkpoint 4

If we use the tree-height storing version of union-�nd, what's a worst-case equivalence graph? What's

a series of union operations that would create it?


